SMS USERS GUIDE

Tom Henderson
Dan Schaffer
Mark Govett

LedieHart
Advanced Computing Branch
Aviaion Divison
NOAA/Forecast Systems Laboratory
325 Broadway
Boulder, Colorado 80303

May 2000
SMS Software Vearsion: 2.1

http:/mww-ad.fd .noaa.gov/ac/ams.html.

1 INTRODUCTION ...ttt e r e s sre s 5

1.1 ORGANIZATION OF THISDOCUMENToouiiiirtestistesrisseeseeeeaessessessessessessesseeseessessessessnssensens 5
12 TERMSAND CONVENTIONSciutruerieeeeiestestessessessessesseeseessssessessessessessesssssssssessessessessessens 6

2 GETTING STARTED ..ottt st st st st st b sne b nneas 7
21 BASICPARALLELIZATION STEPS.....ciiitstestestessessesseseeseessessessessessessessessessesssessessessessessenses 7
2.2 A VERY SIMPLE PROGRAMccteieieitestestestestessesseeseesessessessessessessessssssessessessessessessessenses 7
2.3 SIMPLECOMPUTATION ON A REGULAR GRID....ccueruiriieuieiesiesiesiessessessesseseeseessessessessessesss 9
231 Parallelization by Domain DeCoOmMPOSItION.........ccoovreerernienienee e 10
232 Parallel Printingcoooeeeeieeieesisesese et 17
233 REAUCTION ...ttt na e b e be e 17

24 BOUNDARY INITIALIZATION . ..ctitetetestestestessessessenseneessessessessessessessessessessssssessessessessessens 19
25 A SIMPLE FDA PROGRAMcctiiiieieie st stesteste e eseeeesaesaessestessessesseasesseensessessessessessessens 25
26 WRITING OUTPUT TODISK ..uiiiiiuiiieiiiiesie sttt sttt sttt nne st sae b nneas 33
2.7 USING MULTIPLE DECOMPOSITIONScoititistestessesseneeeeseessessessessessessessessssssesssssessessessens 33

3 DECOMPOSING ARRAYSAND PARALLELIZING LOOPS.......cccccoveirieiiriesieann 36
3.1 CHOOSING DECOMPOSITIONS......ccitetertestestessessessesseessessessessessessessessessssssessessessessessessessens 36
3.2 TWO-DIMENSIONAL DECOMPOSITIONS....ccutitistirierserseeeeseessestessessessessessesssessessessessessessens 37
3.3 DECOMPOSING ARRAYSTHAT USE STATICALLY ALLOCATED MEMORYcccovriereenrnnnens 38
331 How SMS Assigns Processes to Decomposed DimenSIoNS.........cccecveverenereeneniens 39
332 A Satic MEMOIY Program........ccceceieeieeieseese e see e e see e sse e sneesneeneas 43

34 MOREABOUT DECLARE_DECOMP AND CREATE_DECOMP.........cccoocervrerrnnnnns 47
341 Placement of DECLARE_DECOMP and CREATE_DECOMP.cccecvvvrnnene 47
34.2 Load Balancing via Index Scrambling..........cccceverininenenineseeeeesese e 47

35 MOREABOUT DISTRIBUTEccotiiiiiiesesesesesee sttt s nne s 49
3.6 MOREABOUT PARALLEL ..ottt sttt s snenne s 51
3.7 ARRAYSWITHNON-UNIT LOWER BOUNDSccocieieieiesiesiesie e stesseeeeeesae e ssesnesnesnens 54

4 TRANSLATING ARRAY INDICES.......cooi ittt s 56
4.1 TRANSLATING LOCAL INDICESTO GLOBAL INDICES.......coceiirieriesienienreneeeeseesee e sieseennes 56
4.2 TRANSLATING GLOBAL INDICESTO LOCAL INDICESINSIDE LOOPS.......ccccevvereereeneerennne 58
4.3 USING TO_LOCAL TO GENERATE PROCESSOR LOCAL SIZESAND LOOP BOUNDS........ 61
44 GLOBAL-TO-LOCAL INDEX TRANSLATION WITH RESTRICTED EXECUTION.......cccerveeenne. 65

5 HANDLING ADJACENT DEPENDENCIESccccooiiiererese e 68
51 FURTHERDETAILSON EXCHANGE.......ccoeiotiiciceceiese ettt e enens 68
511 Using EXCHANGE in the Case of Two-Dimensional Decompositions................. 68
512 Lalrger STENCHS ..ot 77
5.1.3 MISCEIIANEOUS.ceveeie ettt e e se e seete e e e sseeneeneenneenes 81

5.2 OPTIMIZATIONS .utttestestestestesseeieeseestestestestessessessessesseessessessesbessesbessesseeseeneensensesbessessensens 81
521 Aggregating EXCRangES........ccuvoii et 82

522 Trading Communications for Computations Using HALO COMPc........ 84

523 Pulling Exchanges Outside Of LOOPScceeeererierierieniesiesiesiesee e 88
5.2.4 Using HALO_COMP and TO_LOCAL To Make Subroutines Do Redundant
(@0 01010111 o] 0 F SRS 90
5.3 DEBUGGING ADJACENT DEPENDENCIES: CHECK HALO. ..o 92
6 HANDLING COMPLEX DEPENDENCIES USING TRANSFER........cccccocevvverienen. 93
6.1 FURTHERDETAILSABOUT TRANSFER.......ccoi it 93
6.2 APPLYING TRANSFER TO SPECTRAL NWP MODELScccoiiriinieriesienrieeesieseesieseessesnens 95
7 HANDLING GLOBAL DEPENDENCIES USING REDUCE.........ccccevevererece e 97
7.1 MORE ON STANDARD REDUCTIONSceiteiteriestesiessessesseseessesssssessessessessessessssssessessessessens 97
7.2 BIT-WISE EXACT REDUCTIONS......utitieieteiestestessessessessesseessessessessessessessessesssesssssessessessens 99
8 OTHER DIRECTIVES ..ottt sttt sttt nenneens 103
8.1 SERIAL e e bttt e p e e ne e 103
8.2 INSERT AND REMOVEooiiieieiiiie sttt sttt st 107
ST T €1 (@ S 107
S 1 S 109
9.1 GENERAL UNFORMATTED /Ouiiiiiiiiisiisiesie sttt st 109
9.2 UNFORMATTED I/O OF ELEMENTS OF DECOMPOSED ARRAYS. ..c.vviuiiuieeeeerieseeseeseensenns 114
0.3 FORMATTED IO ..ottt s re e te e sne e teeneesneenneeneens 116
931 FOrmatted INPULccveeieieecie et e e te e sreenneeneeas 116
9.3.2 FOrmatted OULPUL..........ccueeiieciee ettt e e eenneas 116
9.4 1/O PERFORMANCE TUNING.....cccteiteriesiestestestessessenseessessessessessessessessessesssessessessessessessenss 121
94.1 GeENEral GUIAEIINES ..o 122
94.2 The SMIS SErVEr PrOCESScoiiiiiiesiesiesies sttt 122
94.3 S S Yo 1SS 1 USSP 123
944 The FLUSH_OUTPUT DIT€CHVE......ccocieeeeeeieeere et 124
945 Improving Output PerformancCe............oceeiieieieereee e 125
9.4.6 Improving INPUt Performance..........coccooeiiriinieneeeeeee e 127
10 PROGRAM TERMINATION ...ttt snesnens 129
10.1 AUTOMATIC CODE GENERATION FOR TERMINATIONceeiuiruirierienressenseneeneeseeseesseseesnes 129
10.2 EXIT DIRECTIVE ..uiiitiitisiestestesteesee e ste e stestessessessessesseessessessessessessessessesssensessessessessenses 130
10.3 MESSAGE DIRECTIVE.....iiiitieteeeeiesiestessessessessessesseesesssessesssssessessessessesssessessessessessesses 130
11 BUILDING A PARALLEL PROGRAMccciiiiiiinieeeiesie ettt 131
111 OVERVIEW wootiitieiieieiestesteste st ssessesseetestestesbesbesbe s b e st e see e e tessenbesbeebenseene e e eneenteseenbennenns 131
11.2 PPP GENERATED OUTPUT FILES....cueiiiiiiiisieitestiseeeeseeseeseeseestessessessesseessensessessessessenss 131
11.3 BUILDING SM'S PARALLEL SOURCE CODE.......ccveieuieieierieseestessessesseseessessessesssssessenses 131
11.3.1 PPP Command Lin€ OPtiONS........cccvevieieerieeieseesieeieseesieesesree e eeesseesnesseesneeeas 131
I 1 e 0 o] =S R PR 132
11.4 BUILDING PPP EXECUTABLESccciteietestestestesseeseeeeeesaessessestessessesseessessensessessessessenses 135

11.4.1 Makefile Compiler and Linker OPtioNSccccveviveeiiecieeeiee e esee e 136

11.4.2 Include FiIle HAaNAIINGooueiiiiieeieee e 136
11.4.3 Building the ODJECE FIlESocvieeeeee e 137
11.4.4 Building the EXeCUtable............ccoeiieiiiieiece e 137
11.5 PPP ERROR REPORTING......eitittetieiestestessessessessessesseeseessessesssssessessessessesssessessessessessenses 138
1151 ParSING EITOrS ..o 138
1152 SEMANLC EITOrS ..ottt bbbttt e 139
11.6 COMPILATION ERRORS.ccutitiiuieiiesieiesiestestessessessesseseesesssessessessessessessesssessessessessessenses 140
12 RUNNING A SMSPROGRAM ..ottt sttt sae e snesne s 141
121 INTRODUCTION .euiiuteutestestestessessessesseessessessessessessessessesssesssssssssssessessessessesssensessessessessesses 141
12.2 OPTIONAL COMMAND LINE ARGUMENTScoitiiuieiiereeeeeesieseestessessessessesssensessessessessenses 141
12.3 RUN-TIME ENVIRONMENT VARIABLES.......ccctittitieteeieeesiesteseestessessessessesssessessessessessenses 142
124 RUN-TIME ERRORMESSAGESc.ceiteiiiertisiesiessesieseseessessessessessessessessessensessesssssessesses 143

1 Introduction

This document describes how the Scaable Modeling System's (SMS) directives can be used to
pardldize a serid Fortran program for digtributed or shared memory machines. SMS is intended
for use with programs that perform computations on regular gridded data sets. The primary
application area thus far has been Numerical Westher Prediction (NWP) models. SMS has been
used to pardldize NWP modes that use finite difference approximation (FDA) or the spectra
tranform method. SMS is generd enough that it should be useful for pardlelizing smilar
programsin other application aress.

Before reading this document, the reader should first read the companion overview document
"SMS A Directive-Based Padldization Tool for Shared and Didributed Memory High
Performance Computers'. It is assumed tha the reader of this Users Guide is familiar with the
concepts and terms introduced in the overview document. The reader should dso be familiar
with basc pardld processng concepts such as distributed and shared memory, message latency
and bandwidth, the Single Program Multiple Data (SPMD) programming model, and dependence
andyss. The overview document describes these concepts briefly and contains references for
further reading. After reading this Users Guide, the reader should have a good understanding of
the steps that need to be taken to paraleize a serid program using the SMS directives. If more
detailled information about any directive is needed, the reader should refer to the companion
reference document, "SMS Reference Manud". Answers to common questions and detailed
discussions of problems not covered here may be found on the SMS FAQ web site &t

http:/Aww-ad.fd.noaa.gov/ac/SMS _FAQ.html
1.1 Organization of this Document

The SMS Usars Guide begins by introducing the SMS directives in ther smplest form. Section
2 introduces the most fundamentad SMS directives with smple example programs that use the
method of finite difference gpproximation. This section aso introduces other SMS directives
that are usgful in trandform-based programs such as spectral NWP modds. The remaining
sections describe in detall how the SMS directives are used in more complex Stuaions. Section
3 explains how to divide work among multiple processes by the method of data decomposition
and how to pardlelize loops. Additiond loop index trandations needed during pardldization are
described in Section 4. Specia directives that provide direct control over code trandation are
introduced in Section 8. Sections 5, 6 and 7 cover further details about the inter-process
communication directives introduced in Section 2. Section 9 describes pardld 1/O. Directives
that cntrol program termination are dedlt with in Section 10. Sections 11 and 12 explain how to
build and run pardld SMS programs.

1.2 Termsand Conventions

Throughout most of this document, the term "process’ is used instead of "processor” or "CPU".
"Process’ is dightly more generd because it is possble to run more than one process on a sngle
"processor” (and this may actudly make sense on some types of CPU's that provide direct
hardware support for multi-threaded applications). However, on most machines there will be a
one-to-one mapping of Processes to processors.

Fortran source code will gppear in couri er font. When program identifiers gppear indde the
main body of text, they will dso be italicized. Lage blocks of code will include line
numbers to smplify discussons. Commands will adso gopear in couri er font and will be
preceded by a generic command line prompt, ">>". The results of commands will appear in
courier font as wdl. Warning messages output by SMS will be couri er bol d. Fle
names will appear in italics when not in code examples or command lines. SMS directives will
gppear in bol d in code examples. When directive parameters gppear in the text they will be
courier font, bold and italicized. Someimes example code will be a dightly
modified verson of aprevious example. In that case, the changed lines will be highlighted.

2 Getting Started
2.1 Basic Parallelization Steps

The firgt sep in any pardldization effort is to understand the performance characterigics of the
serid program. Program components that take little time to run may not need to be pardldized
a dl. Next, dependence andlysis is peformed to identify the places in the code where inter-
process communication may be required. Dependencies will be discussed as rdevant SMS
directives are introduced. A drategy for dividing the work among the processes must then be
chosen. SMS uses the method of domain decompostion in which portions of large arrays, and
their associated computations, are assigned to each process. The dependence andysis is used to
help pick optima decompostions that will minimize inter-process communication. Findly, SMS
directives are added to pardlelize the code.

To build the pardld code, the Pardldizing Pre-Processor (PPP) is fird run to trandate the code
with directives into new paralel source code. The trandated code is then compiled and linked
with SMS libraries to produce an executable program that can be run on multiple processes. The
smsRun command is used to run the pardle program.

PPP supports many common extensons to ANSI standard Fortran77, as will be seen in the code
examples that follow. A few Fortran90 language features (such as full array assgnment) are aso
supported. Other language extensons supported include namdigt, pointer, include, do-enddo,
automatic arrays, and while satements. A more detalled description of supported language
features can be found a the following SMS site:

http:/mww-ad.fd.nocaa.gov/ac/SMS_Supported Fortran_Features.html

2.2 A Very Smple Program

Bdow isasmple Fortran program that prints a message on the screen:
program basi c_ex1

print *,"HELLO
end

If this progran were sored in a file named basic_ex1.f, it could be built usng the following
commeand:

>> f77 -0 basic_exl basic_exl.f

The above command assumes that the Fortran compiler is named ‘f77°. When run, the program
produces the expected output on the screen:

>> basic_exl

HELLO

This program is smple enough tha a padld verdon can be built directly without adding any
SMS directives. To build with SMS, first run the Pardld Pre-Processor (PPP) to convert the
print satementsinto parale print Satements:

>> ppp basic_exl.f

The above command assumes that the SMS environment variable has been correctly set and that
$SMS/bin is in the current path. For example, if SMS is inddled in directory /usr/local/smg/
then (assuming a c-shell environment) the SMS environment variable should be set asfollows

>> setenv SMS /usr/local/sns

The path could be modified using a command like this

>> set path= ($SMS/bin $path)

See Section 12.3 for detaills about setting other environment variables used by SMS. PPP
trandates the serid code in basic exl.f into padld code and places the result in file
basic ex1 smsf. Depending on the configuration of PPP, other temporary files may aso be
created. The next step isto compilebasic_ex1 _sms.f and link it to the SMIS libraries.

>> f77 -c -1 $SMS/include basic_ex1l_sns.f
>> f77 -0 basic_exl_snms -1 $SMS/include basic_exl_sns.o -L $SMS/1ib \
-l ppp_support -Ifnnt -Innt -lsrs -Inp

The above example assumes common behavior for 77 options "-1" (pecify path for include
files and "-L" (specify path for libraries). Some Fortran compilers handle these options in
dightly different ways. Note that link argument "-Impi" links to the Message Passng Interface
(MPI) library. SMS uses MPI to peform underlying low-level inter-process communication on
most supported machines. Some machines may require different linkers or linker arguments to
link to their MM libraries.

The next gep isto run the pardld program:

>> snmsRun 1 basic_exl _sns

The smskRun command shown above runs program basic_exl sms on 1 process. The output
written to the screen will look something like this:

SMS:: Program started: 1999: 12:02::15:55: 22
SMS: BI TW SE EXACT reductions will NOT be used.
HELLO
SMS:: Program conplete, exiting: 1999:12:02::15:55:22 Elapsed Tine = 0 sec.

8

The text lines beginning with "SMS:" ae time-stamps printed by SMS when a program begins
and when it ends These time-stamps are a usgful guide for measuring wall-clock run times. The
second text line is another message from SMS that indicates default behavior of some reduction
operations discussed in Section 7.2. From now on, these diagnogstic messages from SMS will
usudly be omitted for brevity. The remaning line contans the text we dready saw when this
program was run as a serid Fortran code.

The program can be run on 3 processes using the smsRkun command like this

>> snpsRun 3 basic_exl sns
The following text appears on the screen:

HELLO

This looks just like the run made on one process. Why? By default, SMS prints only one
message per Fortran print (or write) statement to mimic the behavior of the origind serid code as

closdly as possble SMS dso provides other "pardld print” modes, as described later in this
section and in detall in Section 9.3.

2.3 Simple Computation on a Regular Grid

Example 2-1 illudrates a very smple code that initidizes an array, peforms a smple
computation, and prints results on the screen. It congdts of two parts: include file basic.inc and
sourcefilebasic_ex2.f.

[Include file: basic.inc]
integer im jm
comon /sizes_com im jm
[Source file: basic_ex2.f]

program basi c_ex2
i nclude 'basic.inc’

im= 10

jm= 10

call conpute
end

subrouti ne comnpute

i ncl ude 'basic.inc'

integer i, j, Xsum

integer x(imjm

do 100 j=1,jm

do 100 i=1,im
x(i,j) =1

100 conti nue

xsum = 0

do 200 j=1,jm

do 200 i=1,im

xsum = xsum + X(i,])

200 conti nue

print *,'xsum=",6Xxsum

return

end

Example2-1: A smpl eserial codetoinitializean array and print a global sum.

This program initidizes aray x, sums the dements of x, and prints the result on the screen as
shown below:

>> basic_ex2
xsum = 100

Notice that this program uses automatic (dynamicdly dlocated) arays instead of traditiona
Fortran77 datic aray declarations. This technique of dynamic memory dlocation is a widdy
supported extenson to standard Fortran77. The SMS directives support both dynamic and static
memory dlocation schemes. Examples with dynamic memory dlocation are shown first because
they are dightly smpler. Static alocation examples agppear in Section 3.3.

2.3.1 Parallelization by Domain Decomposition

Programs such as this one that involve computations on regular grids are often best pardldized
usng the method of doman decompogtion Arrays and the computations performed on them are
"decomposed” (divided up) among the processes as evenly & possible. For example, Figure 2-1,
Figure 2-2, and Figure 2-3 show how array x might be decomposed in the i dimenson over one,
two and three processes.

10

i nt eger x(10, 10)

.

=
o

P N W s 01Ol 0 ©

1 2 3 45 6 7 8 9 10

Figure2-1: Thegraphical representation of a non-decomposed 10 by 10 integer array.

I nteger x(5,10) integer x(5,10)

=
o

P N W s O1ON 0O O

“Local” indices: 1 2 3 4 5 1 2 3 4 5

PROCESS: P1 P2

Figure2-2: Anillustration of a 10 by 10 array decomposed over two processes. Theseinteger arraysarenow
local arraysdeclared by each process. Local addressing isused to accessarray elements.

11

i nteger x(3,10) i nteger x(3,10)
I nt eger x(4,10)

1, ®
» . 9
8
7
6
5
4
3
2
1
“Local” indices: 1 2 3 1 2 3 4 1 2 3
“Global” indices: 1 2 3 4 5 6 7 8 9 10
PROCESS: P1 P2 P3

Figure2-3: A 10by 10 array decomposed over threeprocesses. |n thisexample, thelocally declared size of
process P2 islarger than the sizes of P1 or P3.

Note that the sub-domains of aray x become smaler as the number of processes increases.
These sub-domains are referred to as "locd" arrays because they cannot be accessed by other
processes on a digributed memory machine. In SMS terms, the origind aray x in the seid
code is sometimes referred to as a "global array”. Indices used to access a globa array are called
"globd indices’ while indices used to access a loca aray ae cdled "locd indices’. Smilaly,
gzes of the dimensions of a globd aray are cdled "globa sizes' and szes of the dimensons of a
loca aray ae cdled "locd Szes'. SMS trests memory as if it were distributed because this
works on machines with either shared or distributed memory.

In this program, doman decompostion of aray x requires three basc steps. Firdt, the way in
which x will be decomposed must be described. For this smple example, we choose to
decompose only in the i dimensgon. (Decompostions of two dimensons are discussed in
Section 3.2). Second, the declarations of array x should be modified to reflect smdler locd
gzes. Findly, the stat and stop indices of each relevant loop must be changed to reflect the
gndler range of loca indices These three steps are accomplished using four SMS directives.
The DECLARE DECOMP and CREATE DECOMP directives are used to describe a
decomposition. Array declarations are modified usng the DISTRIBUTE directive while loop
dat and stop indices are changed using the PARALLEL directive. These directives have been
inserted into the seria program as shown in Example 2-2 :

12

[Include file: basic.inc]

1 integer im jm

2 conmon /sizes_com im jm
3 CSMS$DECLARE_DECOMP(DECOWP_I)

[Source file: basic_ex2.f]

1 program basi c_ex2

2 i ncl ude 'basic.inc'

3 im= 10

4 jm= 10

5 CSMS$CREATE DECOVP(DECOWVP_I, <inmp, <0>)
6 call conpute

7 end

8

9 subrouti ne conpute

10 i ncl ude 'basic.inc'

11 integer i, j, Xsum

12 CSMsS$DI STRI BUTE(DECOWMP_I, <i nP) BEG N
13 integer x(imjm

14 CSMS$DI STRI BUTE END
15 CSMS$PARALLEL(DECOWP |, <i >) BEG N

16 do 100 j=1,jm

17 do 100 i=1,im

18 x(i,j) =1

19 100 conti nue

20 xsum = 0

21 do 200 j=1,jm

22 do 200 i=1,im

23 xsum = xsum + x(i,j)

24 200 conti nue
25 CSMS$PARALLEL END

26 print *,'xsum=",6Xxsum
27 return
28 end

Example2-2: A smpleserial code with comment-based SM Sdirectives added.

Notice that each of the SMS directives begins with five characters "CSMS$' which makes it a
Fortran comment. This is true for dl SMS directives. The advantage of usng comment-based
directivesisthat the origind seriad program can gill be built and run after directives are added.

Also, note that both the DISTRIBUTE and PARALLEL directives come as BEGIN-END pairs.
When an SMS directive appears in this form, its scope consgs of dl lines of code between the
"BEGIN" and "END" directives. Some SMS directives, such as TRANSFER (Section 6) and
REDUCE (Section 7) may be used either done or as a BEGIN-END pair. The text trandation
effects of a BEGIN-END directive pair do not extend into called subroutines.

The firgt directive, DECLARE_DECOMP, is used to give a name to the SMS decomposition that

will be used to divide among the processes the work done in loops 100 and 200. In this
DECLARE DECOMP directive the sngle parameter, DECOMP_I , is the user-chosen name for

13

the decompostion. Any vadid Fortran variable name (up to 20 characters long) may be used to
name a decomposition provided it does not conflict with any varigble in the serid code.

Next, the CREATE DECOMP directive is used to describe what kind of decompostion
DECOMP_I will be. The first parameter is the decompogtion name DECOMP_I| specified in the
DECLARE _DECOMP directive. The second parameter, <i n, describes the decomposition as
a 1-dimensond decompostion where the number of data points in the origind serid dimenson
(the globd dze) is i m The last parameter, <0>, indicates that this decompostion will have no
hdo regions (halo thickness = 0). Hao regions are introduced later in this section and are
described in detail in Section 5.1.

The third directive, DISTRIBUTE, associates arays with decompostions. The second
parameter is used to indicate how aray dimenson(s) correspond to the dimensions of the
decomposition named DECOMP_I . In this dmple one-dimensond decompostion, <i >
indicates that dl aray dimensons of sze i m will be decomposed as described by the single
dimenson of the SMS decompostion named DECOMP_I . The didinction between "dimenson
of an aray" and "dimenson of an SMS decompostion” will become more clear in the two-
dimensiona decomposition examples shown later in Section 3.2.

The DISTRIBUTE directive does two things. Fird, it identifies array declarations that will be
trandated to use locd szes In the above example program, the DISTRIBUTE directive will
cause PPP to trandate the declaration of x to the loca declarations shown in Figure 2-1, Figure
2-2, and Figure 2-3. The second task of DISTRIBUTE is to provide information about how each
aray is decomposed to other SMS directives and to support automatic pardldization of binary
I/0. Thesefeatures are described in detall in later sections.

Findly, the PARALLEL directive identifies loops that must be modified to span the smdler loca
arays during trandation. The second parameter, <i >, indicates that loops with loop index i

should be trandated to span the decomposed dimension of array x. For example, if the program
in Example 2-1 is run on two processes then i loops 100 and 200 will span loca indices 1
through 5 on each process. A second function of the PARALLEL directive is to provide other
enclosed directives with a "default" SMS decompodtion. Directives such as TO_GLOBAL,
TO LOCAL, GLOBAL_INDEX, and HALO COMP can dl determine the current SMS
decompogtion from an enclosng PARALLEL directive. Thus, it is not necessary to use a
decomposition name in these directives when they gopear indde a PARALLEL directive. These
directives are described in more detail in later sections.

Building this code is a bit more complicated than the previous example due to the presence of the
include file that contains a directive. Two commands are now needed. The fird trandates the
indudefile

>> ppp --header basic.inc

14

The "--header" option to the PPP command indicates that the file is an include file and must be
trandated differently than a standard Fortran source file. In the command &bove, include file
basi c.inc will be trandated into new SMS incdude file basi c. i nc. SMS. The second
command requires PPP option "--Finclude' to trandate the Fortran sourcefile:

>> ppp --Finclude=basic.inc basic_ex2.f

The "--Finclude' option to the PPP command indicates that file basi c. i nc is an indude file
that has been trandated by PPP. During trandation of source file basi c_ex2. f, any lines that
indude thisfile will be trandated from

i ncl ude 'basic.inc'

o
i ncl ude 'basic.inc. SMS

to ensure that the trandated include file is used.

Running this program on one process produces the expected result.

>> snsRun 1 basic_ex2_sns
xsum = 100

However, when this program is run on two and three processes, the vaues of xsum differ from
the serid run.

>> snsRun 2 basic_ex2_sns
xsum = 50

>> snmsRun 3 basi c_ex2_sns
xsum = 30

Why did the pardld program produce incorrect results? The answer lies in the computations
made in loop 200. In this loop, dl of the eements of aray x are summed and the result is placed
in varidble xsum However, when the program is run on two or three processes, each process
sums only its own loca sub-domain of x asilludrated in Figure 2-4, and Figure 2-5. To get a
globa result, we will need an additiona directive that will be introduced later in this section.

15

P1
111]1(1])1
1]11(1(1]1
1]1]1]1]1
111]1(1])1
111]1(1 |1
1]1/1]1]1
1711J1]1]1
1]1[(1(1]1
111]11(1])1
1]1]1]1]1

“Global” indices: 1 2 3 4 5

PROCESS:

1111111
111111
111111
111(1(1)|1
111(1(1|1
111111
111111 |1
111111
1111111
1111111

10

7
6
5
4
3
2

>
|

I A

1

6 78 910
xsum = .S.SX(i,J')

P1:

Xxsum = 50

xsum = 50 P2

Figure2-4: Each processsumstheir local portion of thearray x.

P2
1111 |1
1111 |1
1111 |1
111111
111111
11111
11111
111)1 |1
11111
111111

P1

PROCESS:

1
1
1

1
1
1
1
1
1
1
1
1
1

1

1

1

1

1

1

10

g|1|1]1

g| 1111

6 T[1]1

5[1]1[1

3111

> [TT1I]1

8 9 10

4 5 6 7

3
Xxsum = SS<(i)

2

1

“Global” indices:;

xsum = 30

P3:

Xxsum = 40

P2:

xsum = 30

P1:

16

Figure2-5: Inthisexample, local sumsare produced on each of the three processes.

2.3.2 Parallel Printing

By default, only one process will print a message when a print Statement is encountered.
Therefore, the value of xsum printed is the vdue of xsum computed locdly only on the printing

process. We can see the value of xsumon every process by changing the default print behavior
with the PRINT_MODE directive. The print statement in the above program would be modified
as shown below:

CSMS$PRI NT_MODE(ASYNC) BEG N
print *,'xsum=",6,xsum
CSMS$PRI NT_MODE END

This PRINT_MODE directive changes the print mode from the default mode to "asynchronous'
mode. When a print statement is encountered in asynchronous print mode, each process will
print a message to the screen. When run on two processes, the following results are printed:

>> snsRun 2 basic_ex2_sns
xsum = 50
xsum = 50

Clearly, each process has computed the correct sum for its locd hdf of array x. When run on
three processes we may see any of the following results:

>> snsRun 3 basic_ex2_sns

xsum = 40
xsum = 30
xsum = 30

>> snpsRun 3 basic_ex2_sns

xsum = 30
Xxsum = 40
xsum = 30

>> snsRun 3 basi c_ex2_sns

xsum = 30
xsum = 30
Xxsum = 40

In the asynchronous print mode, the messages printed by each process may come out in any
order. Another pardld print mode supported by SMS is the "ORDERED" print mode does
preserve process order. Section 9.3 describes the SM'S print modes in more detail.

2.3.3 Reduction

We have seen that each process has computed the correct sum for its loca sub-doman of array
X. To generate the same result as the origina serid code, these locad sums must be added

17

together as shown in Fgure 2-6 and Figure 2-7. In more generd terms, the computed vaue of
xsum depends on dl of the vaues of array x. This is known as a "globa dependence’ because
the result of the computation depends on every eement of globa array X.

P1 P2

xsum = 50 xsum = 50

@
!

xsum = 100

~

xsum = 100 xsum = 100

P1 P2

Figure2-6: Inthisexample, thereduction gathersthelocal sums, computesa global sum and then broadcasts
theresult out to the processes.

P1 P2 P3
xsum = 30 xsum = 40

!

@

xsum = 30

xsum = 100

xsum = 100 xsum = 100 Xxsum = 100

P1 P2 P3

18

Figure2-7: A reduction performed on three processes produces a global sum of 100 on every process.

The REDUCE directive is used to resolve this dependence. To use the REDUCE directive, insert
the following lineimmediatdy before the print Satement on line 26 of Example 2-2:

CSMS$REDUCE(xsum SUM

The REDUCE directive peforms communications necessary to reduce the local values of a
variable on each process to a single value that is identical on al processes. A specified operator
is used to combine the values from each process. The first parameter indicates that xsumis the
name of the variable © be reduced. The second parameter, SUM specifies that the locd vaues of
xsum will be summed during reduction. Reductions are described in more detall in Section 7.
The parald progran now produces the expected results when run on various numbers of
processes.

>> snsRun 2 basic_ex2_sns

xsum = 100
>> snsRun 3 basi c_ex2_sns
xsum = 100

2.4 Boundary Initialization

In Example 2-2 (page 13), dl dements d aray x were initidized to the same vdue. Often, it is
desrable to initidize aray dements differently depending on their location. This occurs often in
NWP modes where eements near the mode boundaries may be treated differently than other
array dements. For example, the following variant of subroutine conput e in Example 2-2 sets
elements on the aray boundaries where i =1 or i =i mto 2 and dl other elements to 1 as
illustrated in Figure 2-8, and specified in Example 2-3.

19

=
o

N = = T S S SR (S

S T T S S TN N N S A

N = = T S S SR (S

S S T T T T Y i i

N e S N N N T

S S T T T T Y i i

N e S N N N T

S S T T T T Y i i

R N w A 01 O N 0O ©
N IN (N IN ININ I IN NN
N IN DI DI NI

=
N
(o))
~
(o)
©
S

3 4 5
Xxsum = _S_Sx(i)
o

xsum = 120

Figure 2-8: Anillustration of a boundary initialization wher e edge point values are different than interior
points.

1 subrouti ne conpute

2 i nclude 'basic.inc'

3 integer i, j, xsum

4 CSMS$DI STRI BUTE(DECOVP_I, <inp) BEG N
5 integer x(imjm

6 CSMS$DI STRI BUTE END

7 CSMS$PARALLEL(DECOWVP_I,<i>) BEG N
8 do 100 j=1,jm

9 do 100 i=1,im

10 x(i,j) =1

11 100 conti nue

12 do 110 j=1,jm

13 x(1,j) =2

14 x(imj) =2

15 110 conti nue

16 xsum = 0

17 do 200 j=1,jm

18 do 200 i=1,im

19 xsum = xsum + x(i,j)
20 200 conti nue

20

21 CSMS$PARALLEL END
22 CSMS$REDUCE(xsum SUM

23 print *,'xsum =", Xxsum
24 return
25 end

Example2-3: Boundary Initialization requires special handling.
When the serid verson of Example 2-3 isrun, the following results are printed on the screen:

>> basi c_ex3
xsum = 120

However, when the pardllel code is run on more than one process, results are unpredictable:

>> snmsRun 2 basi c_ex3_sns
xsum = 138
>> snpsRun 3 basic_ex3 sns
<core dunp>

The reason for these erroneous results can be seen by examining new loop 110 in detail. Line 14
inloop 110 contains the following statement:

x(imj) =2

This gatement will perform the following assgnments:

x(10, 1) = 2
x(10, 2) = 2
x(10, 10) = 2

However, on two processes, each sub-domain of aray x has locd sze x(5, 10) (see Fgure
2-2) s0 x(10,10) is out of bounds. In fact, this satement will cause an out-of-bounds

assgnment during any run on two or more processes. The behavior of any program that
performs such assgnments is unpredictable.

The gatement on line 13 aso causes incorrect results, even though it does not do out-of-bounds
assgnment:

x(1,j) =2

This satement will perform the following assgnments:

x(1, 1) =2
x(1, 2) =2
x(1,10) = 2

21

However, these assgnments will not produce the desired results when two or more processes are
used because the index in the i dimenson ("1") is a globd index. The effects of this erroneous

assignment statement are shown in Figure 2-9 and Figure 2- 10.

ERRONEOUSASSIGNMENTS

do j =1, 10
x(1,j) =2
enddo *
10 2111111 21111111
j 9 211|1(1)1 21111111
i 8 2111111 21111111
7 2111111 2111111 |1
6 2111111 21111111
5 2111111 21111]11|1
4 2111111 21111]11|1
3 2111111 21111]11|1
2 2111111 2111111 |1
1 2111111 21111]11|1
“Local” indicess. 1 2 3 4 5 1 2 3 4 5
“Global” indices; 1 2 3 4 5 6 7 8 9 10
PROCESS: P1 P2

Figure2-9: Boundary initialization of decomposed data require special handling to avoid erroneous
assignmentson local index 1 by process P2.

22

do j =1, 10 ERRONEOUSASSIGNMENTS

X(1,j)
enddo

|
N

=
o

P N W DN OO N 0 ©
(ST OO [O [OO [O | OO | O | O | Ol
R PR T = T TS I RN PN I
[N P =N PO I S [N RO IR I
(ST IO [CR CO [O T OO [O [O [O TN
S I R S T TV S RN PN I
N G G G G
Rl |~ I~ | |~ | |+~ |-
(ST IO [SR OO [O OO [CR TC [O TN
N N N ST TN TS I O PN I
N G G G G

“Local” indices:
“Global” indices: 1 2 3 4 5 6 7 8 9 10
PROCESS: P1 P2 P3

=
N
=
w
N
N
w

Figure2-10: Boundary initialization of global index 1 will cause erroneous assignmentsin thelocal arrayson
process P2 and P3.

Two problems must be solved to repair this code. Fird, the globa indices 1 and i mmust be

trandated to their local equivdents. Second, the assgnment statements must be modified so they
are only executed on the processes that contain the specified globa indices in their locd sub-
domains. The GLOBAL_INDEX directive solves these problems as shown below:

do 110 j=1,jm
CSMS$GLOBAL _| NDEX(1) BEG N
x(1,j) =2
x(imj) =2
CSMS$GLOBAL_| NDEX END
110 conti nue

23

The GLOBAL_INDEX directives peform the correct index trandations and ensure tha the
enclosed datements are only executed on the appropriate processes. The parameter in the
GLOBAL_INDEX directive, " 1", indicates that these trandations will be applied to aray
indices that correspond to the firg (and in this case only) decomposed dimension. In this case,
the decomposed dimension corresponds to the i dimenson of aray x. (The concept of
"decomposed dimendgon’ is explaned in deal in Section 3) The effects of the
GLOBAL_INDEX directives on the assignmentsof x(1,j) and x(imj) aeshown for the
two process case in Figure 2-11.

do j =1, 10

CSVB$GLOBAL _| NDEX(1) BEG N
igil’n{'j))zzzz NO ERRONEOUS ASSIGNMENTS
CSMBS$GLOBAL _| NDEX END
enddo *
_ 10 |[2]|1)|1]1]1 1|11j1]1]2
: 9 |2|1]1|1]|1 1|11j1]1]2
. 8 |2|1]1|1]|1 1|11j1]1]2
| 7 |2]11]11|1|1 1|11j1]1]2
6 |2|1]1|1]|1 1|11j1]1]2
5 |2]11]1|1]|1 1|11j1]1]2
4 (211]11(1|1 11111112
3 1211|111 1|11j1]1]2
2 |2|11]11(1|1 1|1j1]1]2
1 |2]1]111]1 1|11j1]1]2
“Local” indices: 1 2 3 4 5 1 2 3 4 5
“Global” indices: 1 2 3 4 5 6 7 8 9 10
PROCESS: P1 P2

Figure2-11: GLOBAL_INDEX isused to correctly initialize the boundaries of thearray X.

Now when the pardld code is run, results match the seria code:

>> spsRun 2 basic_ex3 _sns

xsum = 120
>> snsRun 3 basic_ex3_sns
xsum = 120

24

2.5 A Simple FDA Program

The following example is a FDA program that solves Laplace's equation on a two-dimensond
surface with fixed boundaries usng Jacobi rdaxation. On a two-dimensiond surface, Laplace's
equation takes the form:

2 2
M + u =0
"x Ty

A smple approach is to discretize the two-dimensond space and use a finite difference
gpproximation to the derivatives to seek anumerica solution. The discrete equation is:

4*1(i,j) - 1(-1,)) - f(+1) - f(1j-1) - f(ij+1) =0

The initid date is f on the boundaries. The boundaries are constant and non-periodic. The above
equation is solved for f(i,j) iteratively until it converges. The solution is sad to converge when
the difference between successive solutions is less than a specified threshold. The difference
between values of 1(i,j) in two successve iteraions is the following:

df(i,)) = (1/4) * (f(-1,)) + f(i+1)) + f(i,j-1) + f(i,j+2)) - (i)

Usng the method of Jacobi relaxation, the vaue of f(i,j) during an iteration is caculated fom the
vaueof f(i,j) computed in the previous iteration as follows:

fnew(i,j) = fold(i,j) + df(i,j)
In Example 2-4 bedow, boundary dements of aray f are initidly set to 20 (lines 25-31).

Laplace's equation is then solved and diagnostic messages are printed on the screen. Previoudy
described SM S directives have dready been inserted.

[Source file: |aplace.f]

1 program | apl ace

2 i ncl ude 'basic.inc'

3 im= 10

4 jm= 10

5 CSMS$CREATE_DECOVP(DECOVP_I, <imp, <0>)
6 call | apl ace

7 end

8

9 subroutine | apl ace
10 i nclude 'basic.inc'
11 integer i, j, iter
12 real max_error
13 real tol erance
14 paraneter (tol erance = 0.001)

15 CSMS$DI STRI BUTE(DECOWP_|, <i mp) BEG N
real f(imjm, df(imjm

=
»

25

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

CSMS$DI STRI BUTE END
CSMS$PARALLEL(DECOWP_I, <i >) BEG N
do 100 j=1,jm
do 100 i=1,im
f(i,j) =0.0
100 conti nue
do 110 j=1,jm
CSMS$GLOBAL_ | NDEX(1) BEG N
f(1,j) = 2.0
f(imj) = 2.0
CSMS$GLOBAL_| NDEX END
110 conti nue
do 120 i =1,
f(i, 1)
fCijm
120 conti nue
iter =0
max_error = 2.0 * tol erance
Cmain iteration | oop..
do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
iter = iter + 1
max_error = 0.0
do 200 j=2,jm1
do 200 i=2,im1
df (i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
& - (i)
200 conti nue
do 300 j=2,jm1
do 300 i=2,im1
if (max_error .lt. abs(df(i,j))) then
max_error = abs(df(i,j))
endi f
300 conti nue
CSMS$REDUCE(max_error, MAX)

m
= 2.
= 2.

0
0

do 400 j=2,jm1
do 400 i=2,im1
fCig) = (i) +df(i,j)
400 conti nue
enddo
CSMS$PARALLEL END
print *, "Solution required ',iter,' iterations
print *, '"Final error = ', max_error
return
end

Example2-4: Serial code plusdirectivesillustrate a parallel solution to L aplace' sequation. Thissolution,
using a one-dimensional decomposition, producesincorrect results.

Notice that the REDUCE directive uses the maximum operator to reduce max _error via
parameter MAX. The Jacobi relaxatiion will dso work if average error is used ingead of

maximum error. However, usng maximum eror guarantees bit-wise exact results as described
in Section 7.2.

26

When the serid program is run, the following messages are printed on the screen:

>> | apl ace
Solution required 85 iterations
Final error = 9.9968910E-4

When the parald program is run on more than one process, results are incorrect:

>> snsRun 2 | apl ace_sns
Solution required 45 iterations
Final error = 9.9253654E-4

>> snmsRun 3 | apl ace_sns
Solution required 131 iterations
Final error = 9.9420547E-4

Why do results change for different numbers of processes? The answer lies in the computations
made on lines 41 and 42:

df (i,j) = 0.25%(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1)) - f(i,j)
Here, each df (i,) iscomputedfromf (i-21,j),f(i+1,j),f(i,j-1),f(i,j+1),ad
f(i,)). Thistypeof dependenceis caled an "adjacent dependence’ because the computation

apoint (i,) dependson dataat adjacent (or "nearby") points. Adjacent dependencies are
often represented graphicdly using a“ stencil” asshownin

Figure 2-12 and Figure 2-13.
x(i,j) =y(i,j) +y(i+l,j) +y(i-1,j) +y(i,j-1) + y(i,j+1)

y(i-1,j) @=y(i,j+1)

“Stencil”: x(i,]) dependson o ~ —@<y(i+l,j)
y(i.if o
< y(i,j-1)

Figure2-12 Thisfivepoint stencil illustratesthe dependencies of thearray y on the computation of x.

27

x(i,j) =y(i,)) +y(i+1,j) +y(i+2,j) + y(i,j+1) + y(i,]j+2)
+y(i-1,j) +y(i-2,j) +y(i,j-1) +y(i,j-2)
+ y(i+1,)+1) + y(i+1,j-1)
+ y(i-1,j+1) + y(i-1,j-1)
o
“Stencil”: x(i,j) dependson I ’ 1
® @ ®
14
o

Figure2-13: A thirteen point stencil illustratesthe dependenciesrequired when X must access data two
pointsin each direction on Yy in the code segment shown.

In Fgure 2-14 dencils have been overlad on graphica representations of the sub-domans
assgned to each process during a run made on three processes. The stencil centered at globa
point(2, 2) on process P1 illudtrates that computations at this grid point require vaues from
globd point 2, 2), (2,1),(1,2),(2,3),and (3, 2). Thee aray dements are dl ingde
the loca sub-domain of process P1. Smilarly, computations a globd point (5, 8) depend only
on aray eements ingde the locad sub-domain of process P2. However, computations on sub-
domain boundaries cannot be performed so easily. For example, the stencil centered a globd
point (7, 5) on process P2 depends on the dement a globa point(8, 5) which is located in
the locd sub-domain of process P3. Similarly, the stencil centered a globa point(8, 2) on
process P3 requires an dement from process P2. The results of the paralel program above are
incorrect because no data is sent between processes to resolve the adjacent dependence in loop
200.

28

PROCESS: P1 P2 P3

4

o

Out-of-bounds
’ access

p<

? 49
-0 {3
o ®
2 1
2 8

P N W D O1 OO N 00 ©
®
[P NP

w

“Local” indices: 1
“Global” indices: 1

w w
H
N
w
N

O N

=

o

Figure 2-14: lllustration of how an adjacent dependency causes out of bounds data r efer ences on processes
P2 and P3.

It is possble to solve this problem by sending single data points between processes. However,
on high-latency machines, sending messages that contain only one aray dement is very
inefficient compared to sending messages that contain many aray eements. The most common
gpproach to handle adjacent dependencies is to create "hao regions” to store these data as shown
in Figure 2-15. When data in these regions are needed, the halo regions are updated by swapping
columns (or larger blocks) of data between processes as shown in Fgure 2-16. This form of
inter-process communication is caled "exchange' and is supported by the EXCHANGE
directive.

29

PROCESS:

.

“Local” indices:

=
o

P N WP~ 01O 0 ©

P1 P2

L J
o 910
®
®
)
®
® ®
o+ 910 o+
® ®
1 2 3 4 1 2 3 4 5 6 1 2

N A

“HALO” REGIONS

Figure 2-15: Haloregionseiminatethe out of boundsarray references.

.

PROCESS:

=
o

R N Wb OO N 0 ©

7y %

P1

S RS

30

3

Figure2-16: Haloregionsare updated by exchanging data between adjacent processes.

Below isacorrected pardld program that uses halo regions and includes exchange
communication:

[Source file: |I|aplace.f]

1 program | apl ace

2 i ncl ude 'basic.inc'

3 im= 10

4 jm= 10

5 CSMS$CREATE DECOVP(DECOWP_I, <inmp, <1>)
6 call | aplace

7 end

8

9 subroutine | aplace

10 i ncl ude 'basic.inc'

11 integer i, j, iter

12 real max_error

13 real tolerance

14 paraneter (tolerance = 0.001)
15 CSMsS$DI STRI BUTE(DECOWP_I, <inmp) BEG N
16 real f(imjm, df(imjm

17 CSMsS$DI STRI BUTE END

18 CSMS$PARALLEL(DECOVP_I, <i>) BEG N
19 do 100 j=1,jm

20 do 100 i=1,im

21 f(i,j) =0.0

22 100 conti nue

23 do 110 j=1,jm

24 CSMS$GLOBAL_| NDEX(1) BEGQ N

25 f(1,j) = 2.0
26 f(imj) =2.0
27 CSMS$GLOBAL_| NDEX END
28 110 conti nue

29 do 120 i=1,im

30 f(i, 1) = 2.0
31 f(i,jm = 2.0
32 120 conti nue

33 iter =0

34 max_error = 2.0 * tol erance
35 Cnmin iteration |oop..

36 do while ((max_error .gt. tolerance) .and. (iter .Ilt. 1000))
37 iter = iter + 1

38 max_error = 0.0

39 CSMS$SEXCHANGE(f)

40 do 200 j=2,jm1

41 do 200 i=2,im1

42 df (i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
43 & - f(i,))

44 200 conti nue

31

45 do 300 j=2,jm1

46 do 300 i=2,im1

47 if (max_error .lt. abs(df(i,j))) then
48 max_error = abs(df(i,j))

49 endi f

50 300 conti nue
51 CSMS$REDUCE(max_error, MAX)

52 do 400 j=2,jm1

53 do 400 i=2,im1

54 fCig) = (i) +df(i,j)

55 400 conti nue

56 enddo

57 CSMS$PARALLEL END

58 print *, "Solution required ',iter,' iterations
59 print *, '"Final error = ', max_error
60

61 return

62 end

Example2-5: Thelaplace program which hasbeen corrected to exchangethearray f . Resolvesthe adjacent
dependenciesin loop 200.

The third parameter of CREATE_DECOMP directive has been changed to <1>. This indicates
that al arrays decomposed usng DECOMP_| will have a halo region one point thick added in the
first decomposed dimension (the i dimension in this cass). The EXCHANGE directive has been
added on line 39. Its only parameter is the name of the variable (f) to be exchanged. The
EXCHANGE directive is placed immediately before loop 200 to ensure that hao regions of f are
updated prior to the computations that need them. The EXCHANGE directive is described in
more detail in section 5.1.

Now the parallel program produces the correct results on more than one process:

>> snsRun 2 | apl ace_sns
Solution required 85 iterations
Final error = 9.9968910E-4

>> snmsRun 3 | apl ace_sns
Solution required 85 iterations
Final error = 9.9968910E-4

Notice that only interior process P2 has hao regions on both sdes in Figure 2-15. A current
limitation of SMS is that it only supports non-periodic boundary conditions. Therefore, hao
regions are only needed on one side of processes that are on the edge of a globa aray (i.e.
processes P1 and P3). Thislimitation will be removed in afuture SVIS release.

32

2.6 Writing Output to Disk

The Laplace solver (Example 2-5) would be more useful if the find date of aray f could be

written to disk. This is easly done by adding the following code fragment immediately before
ther et ur n statement (line 61) in subroutinel apl ace:

open(10, file="f.out', form unformatted')
wite(l1l0) f
cl ose(10)

When the srid program is run, file f. out is written. For the SMS pardld program, no
additional directives are required to handle this aitput. By default, SMS automaticaly generates
f . out in exactly the same format as the serid program, for any number of processes. However,
SMSS can aso produce other file formats as discussed in Section 9.

2.7 Using Multiple Decompositions

So fa, we have seen how to padldize a program that only requires a sngle doman
decompostion. However, many programs require the use of different decompostions at
different times to run efficiently in pardld. The TRANSFER directive provides the means to
transform arrays between decompositions. Spectrd NWP models are a prime candidates for
gpplication of TRANSFER (see Section 6).

In this section, we present a smple case where two different decompositions are needed. In
Example 2-6, the statement at line 42 contains a dependency caled a "recurrence reation’”. In
this statement, an update to x(i,j) depends on Xx(i,j-1) which was updated in the previous loop
iteration. SMS does not currently provide directives that directly support pardldization of this
type if the array dimenson is decomposed. SMS will support Smple one-dimensiond recurrence
relations in a future rdlease. In this example, the second () dimension is decomposed, so SMS
cahnot handle this satement. Similarly, the loop starting & line 61 prevents decomposition in i .
One solution, given in Example 2-6, isto decompose x ini andy inj .

[transfer.inc]
integer im jm
comon /sizes_com im jm

CSMS$DECLARE_DECOVP(DECOWVP_|)
CSMS$DECLARE_DECOVP(DECOVP_J)

OO, WNE

[transfer.f]
pr ogr am TRANSFER1
inmplicit none

i nclude 'transfer.inc'

OO~ WN B

i nteger i

33

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

i nt eger j
im= 60
jm= 90

CSMB$CREATE_DECOMP(DECOMP_I, <i np, <0>)
CSMB$CREATE_DECOMP(DECOMP_J, <j np, <0>)

call DOl

end

T

subroutine DO IT

i ncl ude

transfer.inc

CSMS$DI STRI BUTE(DECOVP_I, inm) BEG N
real x(imjm
CSMS$DI STRI BUTE END

CSMS$DI STRI BUTE(DECOMP_J, jm) BEG N

real y(imjm
CSMs$DI STRI BUTE END

C BEG N

x =1.0

CSMS$PARALLEL(DECOWP_|, <i>) BEG N

C dependency in the j dinmension that

C SMS does not
doj = 2,
do i =
x(i,j
end do
end do

provide directives to parallelize
jm

1, im

) = x(i,j) + x(i,j-1)

CSMS$PARALLEL END

CSMB$TRANSFER(<X, Y>) BEG N

doj =1,
do i =
y(i,]
end do
end do

jm
1,im
) = x(i,])

CSMS$TRANSFER END

cal | CALCS_THAT_MODI FY_X(x)

CSMVB$PARALLEL(DECOVP_J, <j>) BEG N

C dependency in the i dinension that

C SMS does not

provi de directives to parallelize

34

61 doj =1, jm

62 doi =2, im

63 y(i,j) =y(i,j) +y(i-1,j)
64 end do

65 end do

66 CSMS$PARALLEL END

67

68 open(10,file="f1",form=" unformatted')
69 write(1l0) y

70 cl ose(10)

71

72 return

73 end

Example2-6: A simple SMSparallel program that requires two data decompositions dueto recurrance
relationsin “x” and “y”.

Example 2-6 contains two DECLARE DECOMP and CREATE DECOMP directives. The
DISTRIBUTE directive at line 24 uses DECOMP_| to decompose x in i . The DISTRIBUTE
directive & line 28 uses DECOMP_J to decompose y in j . The TRANSFER directive at line 47
generates the communication to trangpose X into y as illudraed in FHgure 2-17. SMS
implements this by replacing the code between the BEGIN and END TRANSFER directives with
a cdl to a subroutine that does the transpostion. X is referred to as the source array of the
TRANSFER directive and y is referred to as the dedtination array. The type and rank of the
source and destination arrays must be the same. However, the array Szes may differ.

Transpose

S

P2 []

Figure2-17. Anillustration of the data movement required between processes P1 and P2 for atransposition
operation.

P1

35

3 Decomposing Arraysand Parallélizing Loops
3.1 Choosing Decompositions

In order to choose domain decompositions that will dlow optima performance, the dependencies
of arays on one another must be andyzed. Usudly, severa decompostion options are possible.
Decompositions of 3D arrays supported by SMS are shown in Fgure 3-1. The dependence
andyss is used to hdp pick optima decompodtions that will minimize inter-process
communication. Typicd FDA NWP models will be optimaly decomposed in one or both of the
horizonta dimensons as illudrated "d', "b", or "d" of Fgure 3-1. Decompostions used by
typical spectral NWP models are described in Section 6.2.

K

(@) (b) ()

(d) (€) (f)

Figure 3-1: Three-dimensional decompositions supported by SMS.

Other issues to condder when sdlecting decompositions are the architecture of the machine on
which the program will mogt likely be run and how many processes will be available. For vector
machines, it is best to leave the inner dimenson non-decomposed when possble to maximize
vector lengths. On cache-based machines, it may be best to decompose the inner dimension
insead. For example, in Figure 3-1, decompostion "a' would preserve long vector lengths while
decompostion "b" would not. If the number of processes avalable were larger than the number

36

of grid points in the dngle decomposed dimenson, two dimensons would have to be
decomposed.

3.2 Two-Dimensional Decompositions

The full power of the DECLARE DECOMP, CREATE_DECOMP, DISTRIBUTE, and
PARALLEL directives becomes more gpparent when two dimensions are decomposed. Consider
the following example:

[Include file: deconp_exl.inc]
integer im jm km

1
2 conmon /sizes_com im jm km
3 CSMS$DECLARE_DECOMP(DECOWP_I J)

[Source file: deconp_exl.f]

1 program deconp_ex1

2 i ncl ude ' deconp_ex1.inc'

3 im= 15

4 jm= 10

5 km= 2

6 CSMS$CREATE DECOVP(DECOMP_1J, <im jnp, <0, 0>)
7 call compute

8 end

9

10 subrouti ne conpute

11 i ncl ude ' deconp_ex1.inc'

12 integer i, j, k

13 CSMsS$DI STRI BUTE(DECOWP_I J, <inmp, <jnP) BEG N
14 integer z(imjmkm

15 CSMs$DI STRI BUTE END

16 i nteger zsum

17 CSMS$PARALLEL(DECOWP_I J, <i >, <j>) BEG N
18 do 100 k=1, km

19 do 100 j=1,jm
20 do 100 i=1,im
21 z(i,j, k) =1
22 100 conti nue
23 zsum= 0
24 do 200 k=1, km
25 do 200 j=1,jm
26 do 200 i=1,im

27 zsum = zsum + z(i,j,k)
28 200 conti nue

29 CSMS$PARALLEL END

30 CSMS$REDUCE(zsum SUM

31 print *,'zsum=",6zsum
32 return
33 end

Example3-1: An SM S program that usesatwo dimensional decomposition.

37

When run, the serid version of this program prints the following message:

>> deconp_ex1
zsum = 300

Directives CREATE DECOMP, DISTRIBUTE, and PARALLEL now have more complex
paaneters than in the dmple examples from Section 2.3. The second parameter to
CREATE DECOMP, <im j nP, indicates that the decompostion named DECOVP_I J has
two decomposed dimensions and tha the globd sze of the fird decomposed dimension is i m
and the globd sze of the second decomposed dimension is j m The third parameter, <0, 0>,
indicates that DECOMP__| J has no hao regions in either decomposed dimension.

The second parameter to DISTRIBUTE, <i nP, indicates that aray dimensons of Sze i mare
decomposed as described by the first decomposed dimenson of DECOMP_1J. The third
parameter, <j nP, indicates that array dimensons of Sze | mare decomposed as described by the
second decomposed dimenson of DECOWVP_1J. So, the fird dimenson of aray z is
decomposed as described by the first decomposed dimenson of DECOMP_I J and the second
dimenson of aray z is decomposed as described by the second decomposed dimension of
DECOMP_I J. The third dimengon of aray z will not be decomposed. This is decompaosition
"d"in Figure 3-1. More details about DISTRIBUTE can be found in Section 3.5.

The second parameter to PARALLEL, <i >, is usad to identify loop indices for loops spanning
the first decomposed dimension of DECOVP_| J. Similarly, the third parameter, <j >, isusad to
identify loop indices for loops spanning the second decomposed dimenson of DECOVP_I J.
The PARALLEL directive will trandate both the i and j dimensions of loops 100 and 200 to
local loop bounds.

When this code isrun on 2 or 3 processes, we see the expected results:

>> snmsRun 2 deconp_ex1l_sns

zsum = 300
>> snsRun 3 deconp_ex1l_sns
zsum = 300

3.3 Decomposing Arraysthat use Statically Allocated M emory

When dynamic memory dlocation is used, SMS automaticaly sets locd aray szes a run-time.
In contrast, when daic memory dlocation is used, locd aray Szes must be set by the
programmer. Therefore, it is essentid to understand how SMS will assign processes to
decomposed dimensons to avoid dowing execution down on cache machines and wasting
memory on any mechine Even when dynamic memory dlocation is used it is useful to
understand process assgnment when tuning performance.

38

3.3.1 How SM S Assigns Processes to Decomposed Dimensions

To better understand process assignment, subroutine "compute’ has been modified to print out
the number of aray eements each process has in each dimenson. The following code replaces
the print Satement on line 31 of Example 3-1:

CSMS$PRI NT_MODE(ORDERED) BEG N
print *,' MW im=",i-1," jm=",j-1," km=",k-1
CSMS$PRI NT_MODE END

The "ORDERED" print mode ensures that each process prints a message and that messages
adways appear in the same order. The ORDERED print mode only works when al processes
execute the enclosed print stlatement(s). Print modes are discussed in detail in Section 9.

Assume the new program is named deconp_ex2_snms. When it is run on one process, the
following results are printed on the screen:

>> snsRun 1 deconp_ex2_sns
MYy im= 15 jm= 10 km= 2

The results of the one-process run for a snge k plane of array z indicate that loops spanned the
full array dimensons(15, 10, 2) , asshownin Figure 3-2.

real z(15,10)

1A

=Y
o

R N W b 01O N 0O ©

1 2 3 45 6 7 8 9 1011 12 13 14 15

Figure 3-2: lllustration of one“k” planeof thearray Z required to support a one processrun. In this
example, loopswill span theentirearray.

39

On two processes.

>> snsRun 2 deconp_ex2_sns
MYy im= 8 m 10 km= 2
MY im= 7 m 10 km= 2

J
j
Here, one processs loops spanned (8, 10, 2) and the second processs loops spanned

(7,10,2). In the two process run, SMS decomposed the aray in the firsd dimenson as
illustrated in Figure 3-3.

real z(8,10) real z(7,10)

=
o

R N W b 01 O N 0 ©

“Local”indices; 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
“Global” indicess 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3-3. For atwo processrun, SM S assigns two processes to thefirst decomposed dimension (i m) and
leaves the second decomposed dimension non-decomposed.

On three processes:

>> snsRun 3 deconp_ex2_sns

MY im= 5 jm= 10 km= 2
MY im= 5 jm= 10 km= 2
MY im= 5 jm= 10 km= 2

40

In this case, each of the processes loops spanned (5, 10, 2) . SMS assigned three processes to
the firs decomposed dimenson (i m) and left the second decomposed dimenson nor:
decomposed. On 4 processes.

>> snmsRun 4 deconp_ex2_sns

MYy im= 8 jm= 5 km= 2
MY im= 7 jm= 5 km= 2
MY im= 8 jm= 5 km= 2
MY im= 7 jm= 5 km= 2

Here, two of the processs loops spanned (8, 5, 2) and te other two processs loops spanned
(7,5,2). SMS assigned two "columns' of processes to the firsg decomposed dimension § m)
and two "rows' of processes to the second decomposed dimension (j m) as shown in Figure 3-4.

real z(8,5) real z(7,5)

10

O ~N 0 ©
R N W b O

R N W b~ O
R N W b~ Ol

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-

“Local” indices
“Global” indices

Figure 3-4: For afour processrun, SMSdecomposesin both dimensions.

41

On eight processes.

>> snmsRun 8 deconp_ex2_sns

MYy im= 4 jm= 5 km= 2
MY im= 4 jm= 5 km= 2
MY im= 4 jm= 5 km= 2
MY im= 3 jm= 5 km= 2
MY im= 4 jm= 5 km= 2
MY im= 4 jm= 5 km= 2
M im= 4 jm= 5 km= 2
MY im= 3 jm= 5 km= 2

In this case, Sx of the processs loops spanned (4, 5, 2) and two of the processs loops spanned
(3,5,2). Hee SMS has assgned four "columns' of processes to the first decomposed
dimension § m and two "rows' of processes to the second decomposed dimension (). Thisis
illustrated in Figure 3-5.

42

real z(4,5) real z(3,5)

Jt 10

o N 00 ©
R N W b~ O

R N W b~ O
R N W b~ O

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3
v1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Local” indices
“Global” indices

Figure 3-5: In the eight processrun, SMSassignsfour processesto thefirst decomposed dimension and two to
the second.

From these reaults, it can be seen that SMS will assgn more processes to the decomposed
dimenson with the largest globd sSze, when possble When globd szes of decomposed
dimendons are equa, SMS will assgn more processes to the second decomposed dimension.
Also, SMS will adways attempt to make process layout as close to "square' as possble. The
rules followed by SMS to assign processes to decomposed dimensions are described in detall in
Appendix A. However, it may be easer to smply print locd szes as in the previous example. A
future SMS release will ease the process of setting local array sSzes in the dtatic case and will
print out the process layout for each decompostion when it is created.

3.3.2 A Static Memory Program

Example 3-2 illusrales a progran usng daic memory dlocation. In this example the
DECLARE _DECOMP directive requires a new second parameter, <(im 2)+1, jm 2>.
This informs the trandator that the decompostion named DECOMP | J has two decomposed

43

dimensons. It dso indicates thaa DECOVP_|J will be used for arays tha are dHaticaly
dlocated and that the DISTRIBUTE command should trandate Szes of declared array
dimensons corresponding to the firs and second decomposed dimensions to locd Szes
(im2)+1andj m 2 respectively.

[Include file: deconp_ex4.inc]

1 integer im jm km
2 paraneter (im= 15, jm= 10, km = 2)
3 CSMS$DECLARE_DECOVP(DECOMP_|J, <(im2)+1, jm 2>)

[Source file: deconp_ex4.f]

4 program deconp_ex4

5 i ncl ude ' deconp_ex4.inc'

6 CSMS$DI STRI BUTE(DECOWP_I J, <inP, <jmr) BEG N
7 integer z(imjmkm

8 CSMs$DI STRI BUTE END

i nteger zsum i, j, k

10 CSMS$CREATE_DECOWP(DECOWP_1J, <im jnp, <0, 0>)
11 CSMS$PARALLEL(DECOWP_IJ, <i >, <j>) BEGA N

©

12 do 100 k=1, km

13 do 100 j=1,jm

14 do 100 i=1,im

15 z(i,j, k) =1

16 100 conti nue

17 zsum =0

18 do 200 k=1, km

19 do 200 j=1,jm

20 do 200 i=1,im

21 zsum = zsum + z(i,j, k)

22 200 conti nue

23 CSMS$PARALLEL END

24 CSMS$REDUCE(zsum SUM

25 print *,"zsum=",zsum
26 end

Example3-2: An SMS program that uses static memory allocation requiresthelocal sizesbedeclared in the
DECLARE_DECOMP directive. In thisexample, theselocal sizesare: (1 M 2) +1andj m 2.

In gatic memory cases such as this where the number of processes assigned to a decomposed
dimenson does not evenly divide the globd sze of tha dimenson, the loca Szes usad in the
DECLARE_DECOMP directive must be set for the process(es) that use(s) the most memory. As
we saw in Figure 3-4, these are precisdy the loca sizes needed by SMS for a four-process run.
Theterm (i m 2) +1 takes into account the fact that two of the processes requires loca arrays of
gze(8, 5, 2) whilethe other two requiresarraysof sze(7, 5, 2) asilludrated in Figure 3-6.

Since arrays are declared daticaly, the rules of Fortran77 require that (i m 2) +1 and j m 2 be

compile-time congtants in order to be used in a declaration satement. The trandator handles this
by geneding appropricte parameter datements during the trandation of the

44

DECLARE _DECOMP directive. These parameter statements are then used during trandation of
aray sSzes indde DISTRIBUTE directives. Conceptudly, the declaration of z on line 7 of
Example 3-2 will be trandated to:

integer z((im2)+1,jm 2, km

PROCESS: P1, P3 P2, P4
j
i real z(8,10) real z(8, 10)
10
9
8
7
6
5
4
3
2
1
“Local” indicess1 2 3 4 5 6 7 8 1 2 3 45 6 7 X
“Global” indices1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X
UNUSED ARRAY
ELEMENTS

Figure 3-6: For static memory allocation, the size of the decomposed arraysisset in the
DECLARE_DECOMP directive based on the number of processesthat will be used to run the program.
Sometimes all the memory declared will not be used asillustrated in processes P2 and P4.

A run made on 8 processes yields expected results. However, a run made on 2 processes
produces the following:

45

>> snmsRun 2 deconp_ex4_sns
Process: 1 Error at: ./deconp_ex4_sns.f.tnp:10.1
Process: 1 Error status= -2202 MSG DECOMPOSED ARRAYS ARE TOO SMALL.
Process: 1 Aborting...

What happened? From Example 3-2, we saw that the largest local array sizes required on any
process for the two-process run is(8, 10, 2) . However, the DECLARE_DECOMP directive set
loca aray szesto ((im 2)+1,jm2,km = (8,5,2) whichistoo smdl for the two
process run (see Fgure 3-6). SMS detects this error a run time, prints the error messages, and
aborts the program.

Why did it work for the 8process run? Agan, from Example 3-2, we saw that the largest locd
aray Szes required on any process for the eight-process run are(4, 5, 2) . So the local array
szes were big enough to hold the trandated arrays and the program ran as expected. However, it
wasted memory because only haf of each declared array waseverused (1: 4, *, *) .

In addition to wasting memory, performance of the 8-process run might not be optimd on a
cache-based machine because the data used in each array are scattered over a block of memory
twice the needed sze This is likdy to result in more cache misses and may degrade
performance, sometimes dgnificantly. This effect becomes more severe as the number of
processes increases. For example, if the program were run on 32 processes, the largest loca
aray dzes required on any process would be only (2, 3,2). Theefore it is especidly
important to declare arrays using the smalest possible sizes for large numbers of processes.

To fix the locd arays dzes for a two-process run, we can modify the sSzes in the
DECLARE_DECOMP directive as follows:

CSMS$DECLARE_DECOMP(DECOVP_I J, <(inf2)+1, jnp)
If the following DECLARE_DECOMP directive were used

CSMB$DECLARE_DECOMP(DECOMP_I1J, <im | n®)

dl trandated arrays would be declared full-size. This code could then be run on any number of
processes (provided each process has enough memory). This is very useful during debugging
because one common tchnique for finding bugs in a pardld code is to compare results for runs
made on diffeeent numbers of processes. Once debugging is complete, the
DECLARE_DECOMP directives should be changed to minimize memory use.

In summary, SMS provides the flexibility of alowing memory to be wasted for convenience
during debugging. However, the user should try to minimize memory wadte once debugging is
complete. Falure to conserve memory can result in performance degradation on cache-based
meachines.

46

34 More About DECLARE_DECOMP and CREATE_DECOMP
3.4.1 Placement of DECLARE_DECOMP and CREATE_DECOMP

It is important to undestand a few detalls concerning DECLARE DECOMP and
CREATE_DECOMP so these directives can be placed correctly. The SMS code trandator, APP,
converts a DECLARE_DECOMP directive into Fortran declarations of al the variables needed
to dore the internal description of an SMS decomposition. So, a DECLARE DECOMP
directive must be placed before the fird executable line of code in a program. Also, if a
decompostion needs to be visble to more than one program unit, then it is best to place the
DECLARE DECOMP directive in an include file A CREATE DECOMP directive is
trandated into executable Fortran code that initidizes dl the internd variables declared in the
trandation of the corresponding DECLARE DECOMP directivee. = A CREATE DECOMP
gtatement may only be placed where it would be legal to write an executable line of Fortran code.

The rules for placing the CREATE DECOMP and DISTRIBUTE directives differ for programs
that use static or dynamic memory. The CREATE _DECOMP directive can actualy appear after
a DISTRIBUTE directive in the gatic memory case. However, in the dynamic memory case this
is not possble because number of decomposed dimensons is not known until the
CREATE DECOMP directive is reached. In this case, the code generated by
CREATE_DECOMP must execute prior to any subroutine containing DISTRIBUTE directives.

3.4.2 Load Balancing via Index Scrambling

Idedly, each process will have exactly the same amount of work to do. In practice, most NWP
models have computations that vary spatidly so some processes may have more work to do than
others. This is commonly known as load imbdance. Load imbaances dow down a pardld
program because some processes with less work are forced to wait for processes with more work
to cach up. One example is load imbdance in a globd NWP modd due to differences in
computation required for day and night grid-points. In this case more computation is required a
longitudes where the sun shines There ae dso load imbaances between latitudes in the
northern and southern hemispheres during winter or summer. Figure 3-7 illugtrates longitude
scrambling.

47

Figure 3-7 Longitude scramblingisused to reduceload imbalances dueto computational differences
stemming from day night cyclesin aglobal NWP model. In thiscase, the model isrun using 2 processes. One
process hasthe brightly covered segments; the other hasthe darker colored segments. Theeffect isto give
each process half the day-time points and half the night-time points.

The CREATE_DECOMP directive supports a feature caled index scrambling that can reduce the
effects of such load imbaances. Index scrambling is only dlowed when there are no adjacent
dependencies in the dimenson to be scrambled because "EXCHANGE" communication would
be very expensive if indices were scrambled. Severa types of scrambling are supported. These
include longitude scrambling to badance day/night load and laitude scrambling to bdance
winter/summer load. Both of these scrambling methods are useful in globa NWP modes.

To use index scrambling, a fourth parameter is added to the CREATE_DECOMP as shown in the
code fragments below:

CSMS$CREATE_DECOMP(DECOVP_J, <j b, <0>, <SCRAMBLE LAT STRATEGY>)

CSMS$CREATE_DECOMP(DECOMP_I, <i mp, <0>, <SCRAMBLE_LON STRATEGY>)

In the first case, parameter <SCRAMBLE_LAT_STRATEGY> indicates that the first decomposed
dimenson of DECOMP_J will be scrambled usng a method gppropriate for baancing load
anong laitudes in a globd modd. In the second case parameter
<SCRAMBLE_LON_STRATEGY> indicates tha the first decomposed dimenson of DECOMP_|
will be scrambled usng a method gppropriate for baancing load among longitudes in a globa
modd. (Note that neither decompostion has halo regions) No other code changes are required

48

to use the scrambling festure. For this reason, it is convenient to add this festure as a
performance optimization once debugging of the non-scrambled parale code is complete.

3.5 MoreAbout DISTRIBUTE

The DISTRIBUTE directive will ignore scdar varidbles such as integer avg in following code
fragment:

CSMS$DI STRI BUTE(DECOWP_I, <imp) BEG N

integer w(im, avg
CSMS$DI STRI BUTE END

The DISTRIBUTE directive will not change the declaration of avg because avg does not have a
dmendon of dze i m in its declardion. Also, avg will be trested as non-decomposed
(duplicated on each process) by the other SMS directives. The behavior is the same as if the
directive and declarations had been written like this:

CSMS$DI STRI BUTE(DECOWP_I, <imp) BEG N
integer w(im

CSMS$DI STRI BUTE END
i nteger avg

The DISTRIBUTE directive can decompose severa types of arrays as shown the in the following
code fragments.

CSMS$DI STRI BUTE(DECOVP_1 J, <inmp, <jnp) BEG N
integer x(imjmkm
CSMS$DI STRI BUTE END

Here, the fird dimenson of aray x is decomposed as described by the first decomposed
dimenson of DECOMP_I J and the second dimension of array x is decomposed as described by
the second decomposed dimenson of DECOMP_I J. The third dimenson of aray x is not
decomposed.

CSMS$DI STRI BUTE(DECOVP_1 J, <inmp, <jnp) BEG N
real a(imkmijm
CSMS$DI STRI BUTE END

Here, the fird dimenson of aray a is decomposed as described by the firss decomposed
dimenson of DECOVP_| J and the third dimension of aray a is decomposed as described by the
second decomposed dimenson of DECOWMP_I J. The second dimenson of aray a is not
decomposed.

49

CSMS$DI STRI BUTE(DECOVP_I J, <imp, <jmp) BEG N
real b(kmjmim
CSMS$DI STRI BUTE END

Here, the third dimenson of aray b is decomposed as described by the firss decomposed
dimenson of DECOMP_I J and the second dimension of array b is decomposed as described by
the second decomposed dimenson of DECOMP_|J. The fird dimenson of aray b is not
decomposed.

CSMs$DI STRI BUTE(DECOWMP_1J, <inmp, <jnp) BEG N
real c(im2,km
CSMs$DI STRI BUTE END

Here, the fird dimenson of aray ¢ is decomposed as described by the first decomposed
dimensgon of DECOVP_| J. The second and third dimensions of array ¢ are not decomposed.

CSMs$DI STRI BUTE(DECOWMP_1J, <inmp, <jnp) BEG N
real d(10,km
CSMs$DI STRI BUTE END

Here, array d is not decomposed.

CSMS$DI STRI BUTE(DECOMP_I J, <i P, <jn») BEG N

real e(jm
CSMS$DI STRI BUTE END

Here, the sngle dimenson of aray e is decomposed as described by the second decomposed
dimenson of DECOVP_ J.

All of the above declarations could equivdently be enclosed in one DISTRIBUTE directive pair
as shown below:

CSMS$DI STRI BUTE(DECOVP_1 J, <inmp, <jnP) BEG N

integer x(imjmkmn

real a(imkmjm, b(kmjmim, c(im2,km, d(10,km, e(jm
CSMS$DI STRI BUTE END

These smple examples obscure a few subtle features of parameters <i > and <j n> in the

DISTRIBUTE directive. We have described these parameters as "aray dimensons’, but they
are redly somewhat more general. Congder the following code fragments.

50

CSMS$CREATE_DECOVP(DECOMP_| J, <nx+2, ny+2>, <0, 0>)

CSMS$DI STRI BUTE(DECOVP_1 J, <nx>, <ny>) BEG N
real u(nx+2, ny+2, nz)
CSMS$DI STRI BUTE END

These DISTRIBUTE directives will correctly trandate declarations of aray u in a manner
andogous to the trandation of array X in the previous example. However, notice that the second
parameter is <nx> ingdead of <nx+2> as one might suspect. The dring indde the angle
brackets, nx, is redly just used to identify array dimengons. This dring is cdled a "dimenson
tag’. The decoupling of "dimenson tag" from the exact declared aray dimensons provides

some additiond flexibility that minimizes the number of DISTRIBUTE directives that need to be
used.

The dimension tags can be more complicated if necessary. For example, consder the following
fragments from a program that uses dynamic memory:

[program nmai n]

CSMS$CREATE_DECOVP(DECOVP_1J, <nx+2, ny+2>, <0, 0>)
nxp2 nx+2
nyp2 ny+2

[subrouti ne subl]

CSMS$DI STRI BUTE(DECOMP_1 J, <nx, nxp2>, <ny, nyp2>) BEG N
real u(nx+2,ny+2,nz), a(nxp2,nyp2,nz)
CSMS$DI STRI BUTE END

Now the second parameter <nx, nxp2> has two tags, nx and nxp2. Thisindicates that array
dimendons identified by ether nx or nxp2 will be decomposed as described by the first
decomposed dimenson of DECOMP_I| J. Here, arrays u and a will be handled in exactly the

sane way during trandation. The ability to specify more than one dimenson tag for each
decomposad dimension minimizes the number of DISTRIBUTE directives required in cases like
this.

3.6 MoreAbout PARALLEL

There is no run-time performance penaty for usng a PARALLEL directive because processes
are not synchronized. Also, PARALLEL directives may enclose any vaid Fortran executable
datements. Therefore, a program that has only one decompostion will usudly require no more
than one BEGIN-END par of PARALLEL directives for each program unit (subroutine,
function, or main program).

51

The PARALLEL directive will trandate serid loops correctly provided the upper and lower loop
bounds are vaid globa indices. For example, the i and | loops below would dl be correctly
trandated:

CSMS$SPARALLEL(DECOMP_1 J, <i >, <j>) BEA N
do 100 k=1, km
do 200 j=3,jm?2
do 200 i=3,im?2
z(i,j,k) =x(i,j,k) +y(i,j, k)
200 conti nue

do 210 j=1,2
do 210 i =1,
z(i,j,k) =
210 conti nue

m
0

do 220 j=5fm1,jm
do 220 i=1,im
z(i,j,k) =0
220 conti nue

do 230 j=1,jm
do 230 i=1,2
z(i,j,k) =0
230 conti nue

do 240 j=1,jm
do 240 i=im1,im
z(i,j,k) =0
240 conti nue

100 conti nue
CSMS$PARALLEL END

In this code fragment, notice that trandated loop 210 would only be executed on processes that
contain globa indices j =1 or j =2. The PARALLEL directive ensures that other processes will
skip loop 210. Similar trandations will occur for the other loops.

It is useful to keep a few other caveats in mind when using the PARALLEL directive. Indices
must be used consgently to avoid incorrect trandation. Sometimes, indices are used for non
decomposed loops as well as for loops that span decomposed dimensions. This is the case in the
following fragment:

CSMS$SPARALLEL(DECOMP_I J, <i >, <j>) BEA N
do 200 k=1, km
do 200 j=1,jm
do 200 i=1,im
z(i,j, k) =x(i,j, k) +y(i, j, k)
200 conti nue
do 500 i=1,3
call snoot h(z)

52

500 conti nue
CSMS$PARALLEL END

In this case, loop 500 is used to repeatedly cal subroutine snoot h which performs some
computations on decomposed aray z. This loop should NOT be trandated because i is being
used as an iteration count, not as an index into a decomposed dimenson. This is easly fixed
ather by usng a different loop index in loop 500, by moving the PARALLEL END directive to
exclude loop 500, or by using the IGNORE directive as shown in Section 8.

Findly, it is dmost aways necessry to make sure that any loops containing decomposed arrays
be enclosed insde PARALLEL directives. (A counter-example is described in the discusson of
the TO LOCAL directive in Section 4.) During trandation, PPP will generate a warning
message whenever it finds a loop that is not enclosed by PARALLEL directives if that loop
contains a decomposed aray. For example, suppose that we comment out the PARALLEL
BEGIN (line 17) and PARALLEL END (line 29) directivesin Example 3-1 (page 37).

C CSMB$PARALLEL(DECOVP_I J, <i >, <j >) BEG N

C CSMS$PARALLEL END

Assume the new program is sored in a file named deconp_ex5. f. The "Verbose' option of
PPP, discussed in Section 11, can be used to cause warning messages to be displayed during
trandation:

>> ppp --Verbose=2 --Finclude=deconp_ex1.inc deconp_ex5.f

When the erroneous code is trandated, the following warning message will be printed:

"./deconp_ex5_sms.f.tmp" 24 9 WARNING This variable, deconposed by
CSMs$DI STRI BUTE, is being used outside of a parallel region.

If the program is built and run (ignoring the warning message), the following will appear on the
screen:

>> smsRun 1 deconp_ex5_sns

zsum = 300
>> snpsRun 4 deconp_ex5_sms

im= 15 jm= 10 km= 2

MPl: MPI _COVM WORLD rank 1 has term nated without calling MPI _Finalize()
MPl : aborting job
< core dunp >

What happened? With the PARALLEL directive removed, dl loops remain un-trandated and
therefore span al globd indices i =1, 15 and j =1, 10. This was not a problem for the 1-
process run because declarations remain full-szed. However, during the 4process run, process-
local aray szes ae ether (8,5, 2) or (7,5, 2) sotheloopsspanning i =1, 15 and j =1, 10
will go out of bounds. In the run shown above, the out of bounds writes cause a core dump.

53

However, behavior of any Fortran program that contains an out-of-bounds indexing bug can be
very unpredictable and such bugs can be difficult to track down. It is best to use the "Verbose"
option to PPP to generate warning messages and to check the code carefully any time this PPP
warning message appears.

3.7 Arrayswith Non-Unit Lower Bounds

Another issue to ded with regarding array declarations is the posshility that arays may be
declared with lower bounds other than one. For example, condder the following variant of
Example 3-1:

[Include file: deconp_ex6.inc]
integer im jm km
common /sizes_com im jm km
CSMS$DECLARE_DECOMP(DECOWP_|J : <0, 0>)

[Source file: deconp_ex6.f]

program deconp_ex6
i ncl ude ' deconp_ex6.inc

im= 15
jm= 10
km= 2

CSMS$CREATE_DECOVP(DECOVMP_1J, <im jnp, <0, 0>)
call conpute
end

subrouti ne comnpute
i ncl ude ' deconp_ex6.inc
integer i, j, k
CSMs$DI STRI BUTE(DECOWP_1 J, <inmp, <jnmp) BEG N
integer z(0:im1,0:jm21,0:km1), zsum
CSMs$DI STRI BUTE END
CSMS$PARALLEL (DECOVP_I J, <i >, <j >) BEGA N
do 100 k=0, km 1
do 100 j=0,jm1
do 100 i=0,im1
z(i,j, k) =1
100 conti nue
zsum = 0

do 200 k=0, km 1
do 200 j=0,jm1
do 200 i=0,im1
zsum = zsum + z(i,j, k)
200 conti nue

CSMS$SPARALLEL END
CSMS$REDUCE(zsum SUM
print *,'zsum =", zsum
return

end

In this program aray z is declared s0 the first index (lower bound) is zero in each dimenson
ingtead of the Fortran default of one. The bounds of loops 100 and 200 now dtart a zero. The
only difference between the directives in this example and those in Example 3-1 is
DECLARE_DECOMP. The new find parameter, <0, 0> indicates that array declarations have

a lower bound of zero in both decomposed dimensions. The colon ":" is used as a separator in
this syntax so SMS won't confuse lower bounds with globd arays szed for a datic memory
cae. For example, if we had accidentdly used a comma "," instead of the colon, the directive
would have looked like this:

C ERRONEOUS DI RECTI VE!
CSMB$DECLARE_DECOVP(DECOVP_| J, <0, 0>)

This would have been interpreted as a two-dimensond decompostion of daticaly dlocated

arays with globa szes of zero in both decomposed dimensons A correct way to mix datic
dlocation and non-zero lower boundsis shown below:

CSMS$DECLARE_DECOMP(DECOMP_|J, <imf2, jm 2> : <0, 0>)

In this example, the second parameter represents locd szes (<i mf 2, j mf 2>) and the third
parameter islower bound values (<0, 0>) for the decomposition DECOVP_1 J.

55

4 Trandating Array Indices
4.1 Trangating Local Indicesto Global Indices

When a loop has been trandated using the PARALLEL directive, the vaue of the index is now
process locd as illudrated in Figure 2-2 and Fgure 2-3. If the intent of the program is to access
the globa vaue, this index will need to be trandated back to a globd vdue. The TO_GLOBAL
directive is used for this purpose asillugtrated in Example 4-1.

[Include file: tran_index.inc]
1 integer im jm
2 conmon /sizes_com im jm
3 CSMS$DECLARE_DECOVP(DECOVP_I J)

[Source file: tran_indexl.f]

1 program tran_i ndexl

2 implicit none

3 include "tranl.inc'

4 im=5

5 jm=3

6 CSMS$CREATE_DECOVMP(DECOMP_1J, <im jnp, <0,0>)
7 call conmpute

8 end

9

10 subrouti ne conpute

11 implicit none

12 i nclude "tranl.inc'

13 integer i, j

14 CSMsS$DI STRI BUTE(DECOMP_I J, <inP, <jnmp) BEG N
15 integer x(imjm

16 CSMB$DI STRI BUTE END
17 CSMB$PARALLEL(DECOVP_I J, <i >, <j >) BEG N

18 do 100 j=1,jm

19 do 100 i=1,im

20 CSMB$TO GLOBAL(<1,i>, <2,j>) BEG N
21 X(i,j) = (100 * i) + j

22 CSMS$TO GLOBAL END
23 100 conti nue
24 CSMS$SERI AL BEG N

25 doj =1, jm
26 write(*,'(16i5)") (x(i,j),i=1,im
27 end do

28 CSMS$SERI AL END
29 CSMS$PARALLEL END
30 return

31 end

56

Example4-1: An SMSparallel program that incorrectly initializesthearray X inside subroutineconput e.

This program initidizes aray x in loop 100 of subroutine conput e. Each dement of aray x is
then printed on the screen. When the serid code is run, the following is printed on the screen:

>> tran_i ndexl
101 201 301 401 501
102 202 302 402 502
103 203 303 403 503

Snce x(i,j) = (100 * i) + j, each printed dement appears as a three digit integer
where the firg digit is the i index, the second digit is '0", and the third digit isthe j index. The
same result is seen when the SMS verson is run on one process. However, the results are
incorrect when two processes are used:

>> spsRun 2 tran_i ndex1l_sns
101 201 301 101 201
102 202 302 102 202
103 203 303 103 203

Why are the results incorrect? The PARALLEL directive has trandated the i and j indices used
to compute x in loop 100 usng locd indices. However, correct operation requires that x be
initidized usng globd indices as in the orignd sid code The solution is to use the
TO _GLOBAL directive to trandate the loca indices to globd indices. In this case, the body of
loop 100 (line 18) would be replaced with the following code:

CSMB$TO GLOBAL(<1,i>, <2,j>) BEG N
x(i,j) = (100 * i) +]
CSMB$TO_GLOBAL END

The firs parameter in the TO GLOBAL directive, <1, i >, indicaes tha aray index i is an
index in the firs decomposed dimenson. The second parameter, <2, | >, indicates that array
index j is an index in the second decomposed dimension. All occurrences of indices i and |
indde the TO GLOBAL directives that are not array references will be converted to their globa
equivaentsin the first and second decomposed dimensions, respectively.

Note that the TO_GLOBAL does not need an SMS decomposition name when it is enclosed by
PARALLEL directives. In this case, TO GLOBAL uses the decompostion specified by the
encloang PARALLEL directives. Directives TO LOCAL and GLOBAL_INDEX, introduced
later in this section, ds0 have this feature. Running the new pardld code on various numbers of
processes will now yidd the same reault as the serid run. Also note that Snce p is decomposed,
the SERIAL directive is required to handle the print statement on line 26 as will be explained in
Section 8.1.

The TO_GLOBAL directive is dso commonly used in "i f" Statements such as the one shown
below in loop 200:

57

subrouti ne conpute
i nclude 'tran_index.inc'
integer i, j
CSMs$DI STRI BUTE(DECOWMP_1J, <inmp, <jnp) BEG N
integer x(imjm
CSMs$DI STRI BUTE END
CSMS$PARALLEL (DECOVP_I J, <i >, <j >) BEG N
do 100 j=1,jm
do 100 i=1,im
10 CSMS$TO GLOBAL(<1,i>, <2,j>) BEG N
11 X(i,j) = (100 * i) + j
12 CSMS$TO GLOBAL END
13 100 conti nue

O©CO~NOO U WNPE

14 do 200 j=1,jm

15 do 200 i=1,im

16 CSMS$TO GLOBAL(<1,i>) BEA N
17 if (i.gt.3) then
18 CSMS$TO GLOBAL END

19 x(i,j) =0

20 endi f

21 200 conti nue

22 call print_all(x)
23 CSMS$PARALLEL END

24 return

Example4-2: A program that illustrates application of TO_GLOBAL to“if” statements.

Assume the new program is ored in afile named tran_i ndex2. f. Inthe i f Statement on
line 17, index i is compared with globd index 3. However, the enclosng PARALLEL directive
will cause i to be trandated to a local index. The TO GLOBAL directive will cause i to be
trandated back to a globd index for correct comparison with globa index 3. The output below
shows that vaues of x are indeed set to zero for vaues of globa index i greater than 3:

>> snsRun 4 tran_i ndex2_sns
101 201 301 0 0
102 202 302 0 0
103 203 303 0 0

4.2 Trandating Global Indicesto Local IndicesInside L oops

Sometimes, indices that have been trandated to globa vaues need to be trandated back to loca
values to be used as indices into decomposed arrays. The TO _LOCAL directive is used for this
trandation. Consder the following code fragment that uses computed indices to avoid out-of-
bounds references:

do 300 j=1,jm
do 300 i=1,im
i ml max(1,i-1)
ipl mn(imi+l)
x(i,j) =y(i,j) - y(inmtj) - y(ipl,j)
300 conti nue

58

The max and min functions use index i in a compaison with globd index vdues 1 and i m
Therefore, the TO GLOBAL directive must be used (assume that the code fragment below is
enclosed by a pair of PARALLEL directives):

do 300 j=1,jm
do 300 i=1,im
CSMS$TO GLOBAL(<1,i>) BEG N
im = max(1,i-1)
ipl = min(imi+l)
CSMS$TO_GLOBAL END
x(i,j) =y(i,j) - y@im,j) - y(ipl,j)
300 conti nue

The TO_GLOBAL directive will convert i -1 and i +1 to globd vauesso i p1 and i mL will be
computed as global indices. However, i pl1 and i ml are then used as indices into decomposed
array X, 0 they must be converted back from globa to loca vaues to avoid out-of-bounds array
references for multi-process runs. The TO LOCAL directive is used to accomplish this as
shown below:

do 300 j=1,jm
do 300 i=1,im
CSMS$TO GLOBAL(<1,i>) BEG N
CSMS$TO LOCAL(<1,iml,ipl>) BEG N
im = max(1,i-1)
ipl = min(imi+l)
CSMS$TO_LOCAL END
CSMS$TO _GLOBAL END
x(i,j) =y(i,j) - y(inmtj) - y(ipl,j)
300 conti nue

Here, the TO LOCAL and TO_GLOBAL directives are used in combination to accomplish both
phases of index trandation. The first parameter in the TO_LOCAL directive, <1,i ml, i p1>,
indicates that array indices | mL and i p1l are both used in loops that span the first decomposed
dimenson. In this example, occurrences of ether index in code enclosed by the TO LOCAL
directives that are not aray references will be converted to their loca equivdents in the firgt
decomposed dimension.

Sometimes, array indices are ored for later use. If converson to loca indices can be made
before storage, then no index trandation directives are required. This is the case in the following
example

[Include file: tran_index3.inc]

1 integer im

2 comon /sizes_com im
3 CSMS$DECLARE_DECOVP(DECOVP_I)
4
5
S

[

ource file: tran_index3.f]

59

1 program tran_i ndex3

2 i nclude '"tran_index3.inc'

3 im=5

4 CSMS$CREATE_DECOVP(DECOVP_I, <imp, <0>)
5 call compute

6

7

8 subrouti ne conpute

9 i nclude 'tran_i ndex3.inc'

10 CSMs$DI STRI BUTE(DECOWMP_I, <inp) BEG N
11 integer x(im, i, pack_num ip
12 i nteger xpack(im, i_pack(im

13 CSMB$DI STRI BUTE END
14 CSMB$PARALLEL(DECOWP_I, <i >) BEG N

15 do 100 i=1,im
16 CSMS$TO GLOBAL(<1,i>) BEG N
17 x(i) =100 * i

18 CSMS$TO GLOBAL END
19 100 conti nue

20 pack_num = 0

21 do 400 i=1,im

22 if (x(i).gt.300) then

23 pack_num = pack_num + 1
24 xpack(pack_num = x(i)
25 i _pack(pack_num =

26 endi f

27 400 conti nue
28 CSMS$PARALLEL END

29 cal | pack_conput e(xpack, pack_num)
30 do 500 i p=1, pack_num

31 x(i_pack(ip)) = xpack(ip)

32 500 conti nue

33 print *,' ARRAY x:'

34 CSMS$SERI AL BEG N

35 wite(*, “(515)") (x(i), i=1,im
36 CSMS$SERI AL END

37 return

38 end

39

40 subrouti ne pack_conput e(xp, pnum
41 i nteger pnum xp(pnum, p

42 do 600 p=1, phum

43 xp(p) =0

44 600 conti nue

45 return

46 end

Example4-3: Thisprogram illustratesindirectindexing. No directivesarerequired in subroutine
pack_conput e.

Here, subroutine conput e initidizes decomposed aray x and then "packs' sdected vaues of x
into aray xpack for further processng by subroutine pack conput e. Indices of sdected
vaues are dored in aray i _pack. After the sdected vadues of x ae modified by

60

pack_conput e, they are "unpacked" back into aray x. Loop 400 does the sdlection and
packing and loop 500 does the unpacking. The SERIAL directive will be explained in Section
8.1. When the serid codeis run, the following output is printed on the screen:

>> tran_i ndex3
ARRAY Xx:
100 200 300 0 0

In this example, the computations insde subroutine pack_compute are very smple. each packed
data point is just st to zero. Running the paradld code on different numbers of processes yields
the same reaulits.

Subroutine pack_conpute has no computationd dependencies (it is "embarassngly
pardld’). As a result, no SMS directives are required. This type of packing and unpacking is
common in NWP modds especidly in physcs subroutines. In fact, subroutines like
pack conpute may cdl many other subroutines in the same fashion, with none of them
requiring any SMS directives. It is not uncommon for large portions of a NWP mode to require
no SMS directives.

Note that loop 500 need not be enclosed insde the PARALLEL directives because loop index i p
is purdy locd. If this code is trandated usng the --Verbose=2 option to PPP, the expected
warning message appears because array x is being used in a loop that is not indde a pardld
region:

“.Itran_index3_sns.f.tnp" 32 25 WARNING This variable, deconposed by
CSMS$DI STRI BUTE, is being used outside of a parallel region

The warning message can be safdy ignored in this case.

4.3 Using TO_LOCAL to Generate Processor Local Sizesand Loop Bounds

In many NWP modds, large sections of code contain no dependencies that require
communications (typicdly mode physcs routines). If the aray bounds and loop limits ae
passed into these routines, SMS provides a means to pardlelize them without insarting directives
into the code. Example 4-4 shows such a case.

program AVO D_DI RECTI VES
implicit none
i nclude 'tran_index.inc'
im= 8
jm=6
CSMS$CREATE_DECOWMP(DECOWMP_I J, <im jmp, <2,2>)
call conpute
end

subrouti ne conpute
implicit none

POOWO~NO U WNE

e

61

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

i nclude 'tran_index.inc'

integer i, j

i nteger istart, iend, jstart, jend
CSMs$DI STRI BUTE(DECOWMP_1J, <inmp, <jnp) BEG N

integer x(imjm, y(imjm
CSMs$DI STRI BUTE END

CSMB$PARALLEL(DECOVP_I J, <i >, <j >) BEG N

do 100 j=1,jm
do 100 i=1,im
CSMS$TO GLOBAL(<1,i>, <2,j>) BEG N
x(i,j) = (100 * i) +]
CSMS$TO _GLOBAL END
100 conti nue

y =0.0

istart =1

i end =im- 1

jstart = 2

j end =jm
csne$to_local (<1, im : size >, <2, jm
csne$> <1, istart : |bound> <1, iend
csne$> <2, jstart : Ibound> <2, jend

csnms$to_l ocal end
CSMS$SERI AL BEG N
doj =1, jm
wite(*, ' (16i5)") (y(i,j),i=1,im
end do
CSMS$SERI AL END
CSMS$SPARALLEL END
return
end

subrouti ne physics(arr_in, diml_size,

& diml_start, dinml_end,
& din2_start, din2_end,
& arr_out)

i nteger diml_size, din2_size

i nteger arr_in(dinl_size, dinm2_size)
integer diml_start, diml_end

i nteger dinm2_start, dinm2_end

i nteger arr_out(diml_size, dinR_size)

i nteger i, j
do j = din2_start, din2_end
do i = dinml_start, diml_end
arr_out(i,j) = 2.0*arr_in(i,j)
end do

62

ubound>) begin
call physics(x, im jm istart, iend, jstart,

di n2_si ze,

66 end do

67 return
68 end
48

Example4-4 Sample codethat showshow TO_L OCAL can be usal to passlocal array boundsand start/end

loop limitsto subroutines so that no directives be added to the called routines.

Program AVOl D_DI RECTI VES cdlssubroutinephysi cs (line 38), passingthearaysx and
y, the sizesfor each dimenson (i mand j m) and the sarting and ending loop limits (i st ar t
iend, jstart, jend)ove whichtheloopsinphyscswill span. The TO LOCAL
directive at lines 35-37 converts the dimensions and loop limits to their processloca vaues. The
gyntax

<1, im: size>

causes PPP to replace referencesto i m with the process loca size for the first decomposed

dimension, (where the size includes the number of halo points). For a static memory mode, the
sizewould be the loca sze declared in the DECLARE_DECOMP directive. The syntax

<1, istart : | bound>

causes PPPto replaced instances of | st art with thelocd index of the firgt interior point for
the first decomposed dimension for the given process. Figure 4-1 shows al the szes and bounds
for this case, assuming the program is run on 4 processes.

The result isthat, indde subroutine physics, thedi niL_si ze, di n2_size, diml_start,
dimL_end, dinR2_start, and di m2_end dl havethe correct process locd vaues.
Consequently, subroutine physi ¢cs produces the right answer for any process decomposition,
even though it contains no SM S directives.

63

P3 P4

N Wb 01O
P N W b~ O

P1

R N W b~ O
R N W b~ Ol

1 2 3 4 5 6
1 2 3 4 5 6 3 4 5 6 7 8

“Local” indices
“Global” indices

Processor Decomposed Size Lbound Ubound

dimension
P1 1 6 1 4
P1 2 5 1 3
P2 1 6 3 6
P2 2 5 1 3
P3 1 6 1 4
P3 2 5 3 5
P4 1 6 3 6
P4 2 5 3 5

Figure4-1 Processlayout, local sizes, lower boundsand upper boundsfor a4 processrun of Example4-4.

4.4 Global-to-Local Index Trandation with Restricted Execution

The form of the TO LOCAL directive described above should aways be used in combination
with a TO _GLOBAL directive. Otherwise, there will be no assurance that the globd index being
trandated actualy belongs on a process. For example, consder the following code fragment that
isenclosed in aPARALLEL directive but is not insde aloop:

5
4
jd) = 10

—_——

d
d
(

QI

X

Thefollowing use of TO_LOCAL would be incorrect:

CSMS$TO_LOCAL(<1,id>, <2,jd>) BEG N
id =5
jd =4

CSMS$TO_LOCAL END
x(id, jd) = 10

The trandation of i d and j d from globa vaues to process-locd vaues will work fine on the
process that "owns' globa point (5, 4). However, the trandation will be erroneous on
processes that do not own globd point (5, 4) because there is no vdid locd equivdent of these
global coordinates on those processes. In order to redtrict the execution of these statements to the
process that owns the data, the GLOBAL_INDEX directive must be used as shown below:

id=5

jd =4
CSMB$GLOBAL | NDEX(1, 2) BEG N

x(id,jd) = 10
CSMS$GLOBAL_| NDEX END

The GLOBAL_INDEX directives perform the correct index trandations AND ensure that the
enclosed code is only executed on the process that owns globa point (5, 4) . In this case, the
fird parameter in the directive, 1, indicates that al aray indices corresponding to the firs
decomposed dimension will be trandated to their locd equivalents The second parameter, 2,
indicates that al aray indices corresponding to the second decomposed dimension will be
trandated to their loca equivaents In addition, execution of the enclosed assgnment statement
will only be permitted on the process that contains globa point (i d, j d) .

Congder the following example that initidizes the boundaries of an aray tha is decomposad in
two dimensons

1 subrouti ne conpute

2 i nclude 'tran_i ndex5.inc'

3 CSMsS$DI STRI BUTE(DECOWP_I J, <inP, <jnmp) BEG N
4 integer x(imjm

5 CSMs$DI STRI BUTE END

65

6 i nteger i, |j
7 CSMS$PARALLEL(DECOWMP_1J,<i>, <j>) BEG N
8 do 100 j=1,jm

9 do 100 i=1,im
10 CSMB$TO GLOBAL(<1,i>, <2,j>) BEG N
11 x(i,j) = (100 * i) + |

12 CSMS$TO GLOBAL END
13 100 conti nue

14 do 110 j=2,jm1

15 CSMS$GLOBAL_I NDEX(1) BEG N
16 x(1,j) =0

17 x(imj) =0

18 CSMS$GLOBAL | NDEX END
19 110 conti nue

20 do 120 i=2,im1

21 CSMS$GLOBAL_|I NDEX(2) BEG N
22 x(i, 1) =0

23 X(i,jm =0

24 CSMS$GLOBAL_| NDEX END
25 120 conti nue
26 CSMS$GLOBAL_I NDEX(1,2) BEG N

27 x(1, 1) =0

28 x(im 1) =0

29 x(1,jm =0

30 X(imjm =0

31 CSMS$GLOBAL_|I NDEX END
32 print *,' ARRAY x:'
33 call print_all(x)
34 CSMS$PARALLEL END

35 return

36 end

Example4-5: An SMSprogram that illustratesthe use of the GLOBAL _INDEX directivetoinitialize
boundaries.

This program initidizes aray x as in previous examples. It then proceeds to set the boundary
vaues of X to zero in lines 14 through 30. Assume the new program is sored in a file named
tran_i ndex5. f. Whenthe seriad codeisrun, the following is printed on the screen:

>> tran_i ndex5

ARRAY Xx:
0 0 0 0 0
0 202 302 402 0
0 0 0 0 0

Three pairs of GLOBAL_INDEX directives handle the necessary trandations. The first pair
deals with doba indices 1 and i min loop 110 while the second pair deds with globa indices 1
and j min loop 120. The third parr handles globd indices in the four assgnment statements on

lines 27 through 30. In each case, indices are trandated and execution of each enclosed
datement is permitted only on gppropriate processes. When this program is run on multiple
processes, the expected results are printed on the screen.

66

67

5 Handling Adjacent Dependencies

5.1 Further Detailson EXCHANGE

In Section 2.5, we saw how the EXCHANGE directive was used to implement communications
needed to resolve adjacent dependencies for a dynamic memory, one dimensiona decomposition

case where the halo regions required were of width 1.

by discussing other miscellaneous details about EXCHANGE.

5.1.1 Using EXCHANGE in the Case of Two-Dimensional Decompositions

We begin by modifying the Laplace Example 2-5 introduced in Section 2.5 so that a two

dimendona decompostion is used. Two dimensond data decompostions dlow pardld

programs to scale to alarge number of processes.

©CoO~NOULSWNPE

program basi c_ex_2d_deconp

i nclude 'basic.inc'
im= 10
jm= 10

CSMS$CREATE_DECOMP(DECOVP_|

call | aplace
end

subroutine | apl ace

i ncl ude 'basic.inc'
integer i, j, iter
real max_error

real tolerance
paranmeter (tol erance

CSMS$DI STRI BUTE(DECOVP_I , <i P,

<imjnp,

0.001)

real f(imjm, df(imjm

CSMS$DI STRI BUTE END
CSMS$PARALLEL (DECOVP_I , <i >
do 100 j=1,jm
do 100 i=1,im

f(i,j) =0.0
100 conti nue
do 110 j=1,jm
CSMS$GLOBAL_| NDEX(1) BEG N
f(1,j) = 2.0
f(imj) = 2.0
CSMS$GLOBAL | NDEX END
110 conti nue
do 120 i=1,im
CSMS$GLOBAL _| NDEX(2) BEG N

<j>) BEG N

68

In this sub-section, we expand on that
discusson by examining the trestment of two-dimensond decompositions, larger dencils, and

<1, 1>)

<j mp) BEG N

31 f(i, 1)
32 f(i,jm
33 CSMS$GLOBAL | NDEX END
34 120 conti nue

35 iter =0

36 max_error = 2.0 * tol erance

37 Cmin iteration |oop..

38 do while ((max_error .gt. tolerance) .and. (iter .lt. 1000))
39 iter = iter + 1

40 max_error = 0.0

41 CSMS$EXCHANGE(f)

42 do 200 j=2,jm1

43 do 200 i=2,im1

44 df (i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
45 & - f(iyg)

46 200 conti nue

47 do 300 j=2,jm1

48 do 300 i=2,im1

49 if (max_error .It. abs(df(i,j))) then

50 max_error = abs(df(i,j))

51 endi f

52 300 conti nue
53 CSMS$REDUCE(max_error, MAX)

54 do 400 j=2,jm1

55 do 400 i=2,im1

56 fCig) =fCi,)) +df(i,j)

57 400 conti nue

58 enddo

59

60 CSMS$PARALLEL END

61 print *, 'Solution required ',iter,' iterations
62 print *, "Final error ="', nmax_error
63

64 return

65 end

Example 5-1 Two-dimensional decomposition ver sion of Example 2-5.

The CREATE DECOMP directive now lists two decomposed dimension (with globa sizes i m
and j m). The hdo width for eech dimengon is 1 in this case. As discussed in Section 3.2, the
DISTRIBUTE, PARALLEL, and GLOBAL_ INDEX directives are modified to handle the 2-D
decompostions. Although the communication patterns required to support 2-dimensond
decompositions are more complex than the 1-dimendona case, SMS hides dl of these ddalls.

Thus, the EXCHANGE directive is unchanged. Fgure 5-1 shows some sample stencils overlad
on a 3x3 processor decompostion of the problem. The halo regions are the shaded areas. The
white boxes are referred to as the "interior” of each processs sub-domain. The stencil centered
a globa coordinate (3, 2) only requires P1 communicate with P2. However, the stencil
centered at globa coordinate (4, 4) requires P5 communicate with both P2 and P4. Fgure 5-2
and Figure 5-3 show the full communications pattern for a 2D exchange. Notice that the corner
hao points of the center process are filled with data from the corresponding corner processes in
the drawing.

69

P7 P8 P9

10
P4 P5 P6
.
6
5 [)
4 .--‘--0
P1 P2 P3
3 ®
2 | |orer®
1 ®
Global 12 3 4 345 6 7 7 8 9 10

N/

“HALO” REGIONS

Figure 5-1 Sample stencils overlaid on a 3x3 process decomposition for the Laplace problem. The halo
regionsaretheshaded areas. Thewhiteboxesarereferredtoasthe"interior" of each process's sub-domain.

70

BEFORE EXCHANGE

jB .aq .8

Figure 5-2 Schematic of how data are dstributed among 9 processes just prior to an exchange operation. The
big boxes contain the data. The boxeson the edgesarethe halo regions.

AFTER EXCHANGE

P7 P8
PA PS5
P1 P2

Figure5-3 Illustration of the data distribution just after a 2 dimensional exchange. Thehaloregionsin
Figur e 5-2 have been filled with the data from the corresponding neighboring processes.

The obvious cases when 2-D decompositions are required occur for problems having fewer
points in a decomposed dimenson than there are processors available. For instance, Example
2-5 (page 32) could run on a most 10 processes because the size of the decomposed dimension
is 10. Another, more subtle, issue is that adjacent communication only scales when 2D process
layouts are used. Figure 5-4, Fgure 5-5, Figure 5-6, and Figure 5-7 show why this is the case for
exchanges made on asize 16x16 array.

1x4 Process Layout : 32 Points Sent By Each Process

P4

16

P3

P2

16

P1

Figure 5-4 Schematic of the number of data points sent by each process during an exchange for a 1x4 process
layout. In this case, each process sends 16 data points in each of 2 directions for a total of 32. In this figure
and the three that following, edge processes include halo regions on both sides for illustration purposes even

though SM Sdoesnot currently support periodic boundary conditions.

73

1x16 Process L ayout : 32 Points Sent By Each Process

16

16

16

16

Figure5-5 Schematic of the number of data points sent by each process during an exchange for a 1x16
processlayout. |n thiscase, each process sends 16 data pointsin each of 2 directionsfor atotal of 32.

74

2x2 Process Layout : 32 Points Sent By Each Process

&

Figure 5-6 Schematic of the number of data points sent by each process during an exchange for a 2x2 process
layout. In thiscase, each process sends 8 data pointsin each of 4 directionsfor atotal of 32.

75

4x4 Process Layout : 16 Points Sent By Each Process

Figure 5-7 Schematic of the number of data points sent by each process during an exchange for a 4x4 process
layout. In thiscase, each process sends4 data pointsin each of 4 directionsfor atotal of 16.

76

If only one dimengon is decomposed, the number of data points exchanged between neighbors
remains constant when the number of processes increases from 4 to 16 (and beyond) (Figure 5-4
and Fgure 5-5). However, if a 2D decompodtion is implemented then when the process layout
is changed from 2x2 (4 total) to 4x4 (16 totd), the number of data points exchanged is halved
(Figure 5-6 and Fgure 5-7). The generd rule is that if square process layouts are used, the
number of data points communicated scales as]/JN_p , where Np is the number of processes.

Asseenin Section 3.3.1, SMStries to make the process layouts as close to square as possible.
5.1.2 Larger Stencils

As illugrated in Fgure 2-14, the widths of the dencil for the calculation of df in the Igplace
program is one point in each direction. Since this is the only computation in Laplace requiring
"exchange', it is dear that the hdo widths specified in CREATE DECOMP mugt be 1 in the i
andj dimensons. However, suppose we modify Example 2-4 as shown in Example 5-2 below.

1 program basi c_ex_hal 02

2 i nclude 'basic.inc'

3 im= 10

4 jm= 10

5 CSMS$CREATE DECOVP(DECOVP_I, <inmp, <2>)
6 call | aplace

7 end

8

9 subroutine | aplace

10 i nclude 'basic.inc'

11 integer i, j, iter

12 real max_error

13 real tolerance

14 parameter (tolerance = 0.001)
15 CSMs$DI STRI BUTE(DECOVP_I, <inmp) BEG N
16 real f(imjm, df(imjm

17 CSMS$DI STRI BUTE END

18 CSMS$PARALLEL(DECOWP_I, <i >) BEG N
19 do 100 j=1,jm

20 do 100 i=1,im

21 f (i,j) =0.0

22 df(i,j) = 0.0

23 100 conti nue

24 do 110 j=1,jm

25 CSMS$GL.OBAL_| NDEX(1) BEQ N

26 f(1,j) = 2.0

27 f(imj) =2.0

28 CSMS$GLOBAL_| NDEX END

29 110 conti nue

30 do 120 i=1,im

31 f(i, 1) = 2.0

32 f(i,jm = 2.0

33 120 conti nue

34 iter =0

35 max_error = 2.0 * tol erance

77

36 Cmain iteration |oop..

37 do while ((max_error .gt. tolerance) .and. (iter .l1t. 1000))
38 iter = iter + 1

39 max_error = 0.0

40 CSMS$EXCHANGE(f)

41 do 200 j=2,jm1

42 do 200 i=2,im1

43 df (i,j) = 0.25*(f(i-1,j) + f(i+1,j) + f(i,j-1) + f(i,j+1))
44 & - f(iyj)

45 200 conti nue

46 do 300 j=2,jm1

47 do 300 i=2,im1

48 if (max_error .lt. abs(df(i,j))) then

49 max_error = abs(df(i,j))

50 endi f

51 300 conti nue
52 CSMS$REDUCE(max_error, MAX)

53 do 400 j=2,jm1

54 do 400 i=2,im1

55 fCij) =fC,)) +df(i,j)

56 400 conti nue

57 enddo

58

59 CSMS$EXCHANGE(df)

60 doj =1, jm

61 doi =3, im2

62 f(i,j) =f(i,j) + 2.0*df(i,j) - df(i-2,j) - df(i+2,j)
63 end do

64 end do

65

66 CSMS$PARALLEL END

67 print *, "Solution required ',iter,' iterations
68 print *, '"Final error ="', max_error

69

70 end

Example5-2 Madified version of Example 2-5 with additional codethat hasa stencil width of 2in thel
direction.

For the caculaions garting a line 60, the width of the stencil is 2 in the i direction and 1 in the
] direction asshown in Figure 5-8.

78

df2(i,j) = 2.0%df(i,j) - df(i-2,j) - df(i+2,j)

New Stencil New Stencil
Point Point

v v

di(i-2,j) O—@—@—@—@ di(i+2,j)

Figure 5-8 Moadified stencil for additional calculations in Example 5-2. This time the stencil width is 2 in the
I direction.

The exchanges of the sze 2 hdo regions are aggregated to reduce latency as shown in Fgure
5-9.

79

P1 P2

Figure5-9 A illustration showing how data points from two-point thick halo regionsare combined into a
single message that is sent to the neighboring processin order to reduce latency.

This program now has 2 cdculaions involving the same dimenson of the same decompostion
with different stencil widths. SMS handles this by requiring the programmer to make the hao
width of the decomposition equd to the larger of the two widths. It is up to the programmer to
determine the width of the largest stencil required by each dimenson of every decompostion.
The CREATE _DECOMP directive (line 5), of Example 5-2 (page 78) shows the correct halo
width specification (<2>).

Choosng a dngle hdo width could mean some data are communicated unnecessarily. The
exchange a line 40 (Example 5-2) is an example of such inefficiency. The dencl of the
computations in loop 200 is ill one wide in the i direction. However, since the hao width of f
is now 2 in this dimenson, one extra hao point on each sde for each j will be communicated

unnecessrily. This extra communication can be diminged by udng a vaiat of the
EXCHANGE directive that only exchanges part of the halo region:

CSMB$EXCHANGE(f <1: 1>)

80

This option to EXCHANGE tells SMS to exchange only the firsd hao point in the upper and
lower hao regions.

If we were to modify Example 52 to use a two dimensonad decompostion, the
CREATE_DECOMP directive would look as follows:

CSMS$CREATE_DECOMP(DECOMP_I J, <imjnp, <2,1>)

Now, the maximum gencil width is 2 in the firg decomposed dimenson and 1 in the second
decomposed dimension.

5.1.3 Miscellaneous

For exchanges udng daic memory modds the processlocal aray sizes pecified in the
DECLARE DECOMP directive must be large enough to include the hao regions. In the
program fragment below, the hado sze is one. Since there is a hao region on each Sde, the
declared locd array dze is the globd sze § m) divided by the umber of processes (4) plus 2 to
accommodate the halo regions and plus 1 since 4 does not divide 30 evenly.

program STATI C_MEMORY_EXCHANGE
inmplicit none

integer im
paraneter (i m= 30)
integer jm

paranmeter(jm= 5)
CSMS$DECLARE_DECOMP(my_dh, <im4 + 2 + 1>)

A second point about EXCHANGE is that, for both static and dynamic memory models, the
number of processes used must be smdl enough to ensure the sze of the interior is greater than
the hao width in each decomposed dimension.

Findly, we point out thaa EXCHANGE automaticaly implements the synchronization required
for the paralel code to produce the correct answer. A process scheduled to receive data from a

neighbor will wat until the data have fully arived before proceeding with the next set of
cdculations.

5.2 Optimizations

In this section, some optimizations are described that can be employed to reduce the number of
exchanges and the amount of data exchanged in apardld SMS program.

81

5.2.1 Aggregating Exchanges

The program SLOW below, uses a daticdly declared one dimensonad decompasition (line 10)
to digtribute the arrays a, b and ¢ which contain adjacent dependencies (lines 44, 45, 52). In this
example, a hao thickness of one is defined by CREATE _DECOMP (line 24). After a series of
iterations (line 39) agloba sum is produced with the REDUCE directive (line 63).

1 program SLOW

2 implicit none

3 integer im

4 paranmeter (i m= 30)

5 integer jm

6 parameter(jm= 5)

7 integer iterations

8 parameter(iterations = 3)

9
10 CSMS$DECLARE_DECOWP(rmy_dh, <im 3 + 2>)
11
12 CSMS$DI STRI BUTE(ny_dh, <imr) BEG N
13 real a(im

14 real b(imjm

15 real c(imjm

16 CSMS$DI STRI BUTE END

17

18 real ysum

19
20 i nteger i
21 i nt eger j
22 i nteger iter
23
24 CSMS$CREATE_DECOWP(ny_dh, <imp, <1>)
25
26 ysum = 0.0
27 b =0.0
28 c =0.0
29
30 doj =1, jm
31
32 CSMS$PARALLEL(my_ dh, <i>) BEGA N
33 doi =1, im
34 CSMS$TO GLOBAL(<1, i>) BEG N
35 a(i) =real (3*i + 2 +j)
36 CSMS$TO GLOBAL END

37 end do

38

39 do iter = 1, iterations
40
41 CSMS$EXCHANGE(a)
42
43 doi =2, iml
44 b(i,j) = a(i+1l) + a(i-1)
45 c(i,j) =b(i,j) +c(i,j)
46 end do

82

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

CSMB$EXCHANGE(b)
CSMB$EXCHANGE(¢)

do i =
a(i)
end do

2, im1l
= b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
end do
doi =2, im- 1
ysum = ysum + a(i)

end do

end do

CSMS$REDUCE(ysum SUM

print *, 'ysumis ', ysum
CSMS$PARALLEL END
end

Example 5-3 A sub-optimal version of a program parallelized using SM S.

SMS provides the capability to aggregate the exchanges of multiple varidbles. If lines 48-49 are
replaced with

CSMB$EXCHANGE(b, ¢)

then SMS will combine the communications of the corresponding hao regions of b and ¢ as
shown in Fgure 5-10. Since the number of messages sent is halved, performance on high-
latency machines will improve.

83

Var 1

Var 2

Figure 5-10 An illustration of how communications are aggregated to reduce latency for a portion of the
exchange of Var 1 and Var 2. The last column of process P1's variables are communicated as a single
message to P2 wherethey are unpacked into the corresponding halo regions.

5.2.2 Trading Communicationsfor ComputationsUsing HALO_COMP

Example 5-3 can be further optimized by trading communication for redundant computations in
the hao region as briefly discussed in the SMS overview pgper. This is done usng the
HALO_COMP directive to modify the ranges of pardld loops to include computations in the
halo regions. These extra computations can eiminate the need for some exchanges.

Figure 5-11, Fgure 5-12, and Figure 5-13 illustrate how redundant computations work. Without
the HALO COMP directive, b and ¢ ae only computed in interior points usng sencils like
thet shown in Figure 5-11.

1 bn ’ 1] Cn StenCIIS

P1 P2 P3

2 o0

“Global” 1 2 3 4 3 4 5 6 7 6 7 8 9

Figure 5-11 Memory layout of “a’ (assuming im=9, jm=3) with sample stencil for calculations of “b” and “c”
overlaid.

“a’ stencil
P1 P2 P3
: &
2 o009
1
Global
1 2 3 5 6 7 6 7 8 9

Figure 5-12 Memory layout of “b” and “c” with sample stencil for calculation of “a@" overlaid. The halo
regionsof “b” and “c” must be updated via exchangefor the calculation of “a” to be executed correctly.

Hdo regions of b and ¢ must then be updated via an exchange for a to be properly computed as
shown in Fgure 5-12. A computation one step into the hao region (Fgure 5-13) requires that a
have a hao sze of two instead of one. Since process P1 now computes points such as b(4, 2)
and c(4, 2), the computation of a(3, 2) shown in Fgure 5-12 can proceed without having
exchanged b and c. However, extra computations must be done since process P2 must aso
perform exactly the same computation for its corresponding pointsb(4, 2) andc(4, 2) ,

85

In this example, the number of exchanges AND the amount of data communicated have been
reduced. The amount of data communicated is less because the benefit of not exchanging both b
and c is only patidly offset by the fact that the amount of data communicated in the exchange

of a has doubled.

1] b” ’ 1] C" StenCiIS
centered in the halo region

P1 / P2 P3

| an_sn J
1
Global
1 2 3 4\5 2 3 4 5 6 7 8 5 6 7 8 9
Updated halo
region

Figure 5-13 Modified memory layout of “a” with new sample stencil centered in thehalo region. The
computation of point b(4,2) and c(4,2) effectively updatesthe haloregionsof “b” and “c¢” sothat the
computation of “a” in Figure 5-12 can be made without an exchange.

A ne improvement in performance by this technique will only be redized if the cogt of the
additional computation by each process is less than the cost of exchanging b and c¢. Whether or
not the code runs faster will, in genera, depend on the communication paiterns in the program,
the number of processes used, and the target hardware platform. Since adjacent communication
does not scde linearly, improved performance will more likely be achieved for a large number of
processes on machines where the ratio of communications speed to processor speed is low.

A veson of Example 5-3 that implements redundant cdculations is shown in Example 5-4. The
HALO _COMP directive on line 43 tells SMS that the enclosed loop should be executed 1 step
into the hao region in each direction. This updates b and ¢ sufficently to saidy the
dependencies in the loop at lines 52-54. DECLARE_DECOMP and CREATE_DECOMP have
been modified to accommodate the new hdo Sze of 2. The exchanges of b and ¢ have been

diminated.

86

O©CO~NOO U WNPE

QOO OB, DIMEDIMEDRMNOWWWWWWWWWWNNNNNDNDNNNNRRPRERPRERPERRRERRE
A WONRPOOONOUPRWNRPFPOOO~NOUOPRAWNRPRPROOONOUPRAWNRPEPOOO~NOOOPAWNEO

pr ogr am FASTER

implicit

none

integer im
parameter (i m= 30)
integer jm
paraneter(jm = 5)
i nteger iterations
paraneter(iterations = 3)

CSMS$DECLARE_DECOVP(my_dh, <im 3 + 4>)

CSMS$DI STRI BUTE(my_dh, <ime) BEG N
real a(im

real b(imjm
real c(imjm

CSMS$DI STRI BUTE END

real ysum

i nteger i
i nteger j

integer iter

CSMS$CREATE_DECOVP(ny_dh, <inp, <2>)

ysum = 0
b =0.0
c =0.0
doj =1,

CSMB$PARALLEL(ny_dh, <i>) BEG N

do i =

1

CSMS$TO_GLOBAL(<1,
real (3*i + 2 + j)
CSMS$TO_GLOBAL END

a(i)
end do

do iter

CSMVB$EXCHANGE(a)

m
i >) BEG N

1, iterations

CSMS$HALO COMP(<1, 1>) BEG N

do i

21

b(i)
c(i,j)

end d

o

CSMS$HALO COMP END

do i
a(i
end d

)
(0]

21

im1l
a(i+1) + a(i-1)
b(i,j) + c(i,j)

im1l
b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)

87

55

56 end do

57

58 doi =2, im- 1

59 ysum = ysum + a(i)
60 end do

61

62 end do

63

64 CSMS$REDUCE(ysum SUM

65

66 print *, 'ysumis ', ysum
67

68 CSMS$PARALLEL END

69

70 end

Example5-4 A ver sion of Example 5-3 that has been optimized by trading communicationsfor redundant
calculationsin the halo region.

5.2.3 Pulling Exchanges Outside of L oops

Progran FASTER is dill inefficent on hightlatency machines because the exchange of a (line
42) occurs indde the j loop. To reduce the number of exchanges (thus improving performance)
the exchange is moved outsde the j loop. This requires promoting a from a one dimenson a
two-dimensiond array (line 13) and cresting asecond j loop (line 44) as shown in Example 5-5.

1 pr ogr am FASTEST

2 implicit none

3 integer im

4 parameter (i m= 30)

5 integer jm

6 paraneter(jm = 5)

7 i nteger iterations

8 paraneter(iterations = 3)

9

10 CSMS$DECLARE DECOMP(ny_dh, <im 3 + 4>)
11

12 CSMs$DI STRI BUTE(nmy_dh, <i np) BEG N
13 real a(imjm

14 real b(imjm

15 real c(imjm

16 CSMS$DI STRI BUTE END

17

18 real ysum

19

20 i nt eger i

21 i nteger j

22 i nteger iter

23

24 CSMS$CREATE_DECOWP(ny_dh, <ime, <2>)
25

26 ysum = 0.0

88

27 b =0.0

28 c =0.0

29

30 doj =1, jm

31

32 CSMS$PARALLEL(ny_dh, <i>) BEG N
33 doi =1, im

34 CSMS$TO GLOBAL(<1, i>) BEA N

35 a(i,j) =real (3*i + 2 + j)
36 CSMS$TO GLOBAL END

37 end do

38 end do

39

40 do iter = 1, iterations
41

42 CSMS$EXCHANCE(a)

43

44 do j =1, jm

45

46 CSMS$HALO COWP(<1, 1>) BEG N

47 doi =2, im1

48 b(i,j) = a(i+1,j) + a(i-1,j)
49 c(i,j) =b(i ,j) +c(i ,j)
50 end do

51 CSMS$HALO COWVP END

52

53 doi =2, im1l

54 a(i,j) =b(i+1,j) + b(i-1,j) + c(i+1,j) - c(i-1,j)
55 end do

56 end do

57

58 end do

59

60 doj =1, jm

61 doi =2, im- 1

62 ysum = ysum + a(i,j)
63 end do

64

65 end do

66

67 CSMS$REDUCE(ysum SUM

68

69 print *, 'ysumis ', ysum
70

71 CSMS$PARALLEL END

72

73 end

Example5-5 A version of Example5-3 that has been further optimized by modifying some of the serial code.
Array a hasbeen promoted to two dimensionsto allow the exchange to be placed outside of the] loop.

The amount of data communicated by each process (roughly 2*j ntiterations) is unchanged.
However, the number of communications is reduced from 2*j ntiterations to 2*iterations. The
performance gain from this optimization can be quite dramatic on high latency machines. The

89

drawbacks of the optimization in this particular case are the increased memory usage (caused by
the promoation of a) and the dightly increased code complexity.

524 UsngHALO_COMPand TO_LOCAL To Make Subroutines Do Redundant
Computations

We saw in Section 4.3 how the TO_LOCAL directive can be used to padldize subroutines
without requiring directives ingde the subroutine code. The approach works by making the
subroutines operate on the interior of the process locd arays. Now, suppose we want those
cdled routines to do redundant computetions in the hao region to avoid communication.
Example 5-6 shows a modified verson of subroutine conput e from Example 4-4, illudraing
how thisis done.

1 subrouti ne conpute

2 inplicit none

3 i nclude 'tran_index.inc'

4 i nteger i, |

5 i nteger istart, iend, jstart, jend

6 CSMS$DI STRI BUTE(DECOVP_1 J, <inmp, <jnP) BEG N

7 integer x(imjm, y(imjm

8 CSMS$DI STRI BUTE END

9

10 CSMS$PARALLEL(DECOWP_I J, <i >, <j >) BEG N

11

12 csns$hal o_conmp(<1, 1>, <1,1>) begin

13 do 100 j=1,jm

14 do 100 i=1,im

15 CSMS$TO GLOBAL(<1,i>, <2,j>) BEG N

16 X(i,j) = (100 * i) + j

17 CSMS$TO _GLOBAL END

18 100 conti nue

19 csns$hal o_conp end
20
21 y = 0.0
22
23 istart =1
24 i end =im- 1
25 jstart = 2
26 j end = jm
27
28 csme$to_l ocal (<1, im : size > <2, jm : size >,
29 csne$> <1, istart : |bound> <1, iend : ubound>,
30 csne$> <2, jstart : lbound> <2, jend : ubound>) begin
31
32 csnms$hal o_comp(<1, 1>, <1,1>) begin
33
34 call physics(x, im jm istart, iend, jstart, jend, y)
35
36 csms$hal o_conp end
37

90

38 csnme$to_l ocal end

39

40 doj =2, jm

41 doi =1, im- 1

42 X(i,j) =y(i,j) +y(i+l,j-1)
43 end do

44 end do

45

46 CSMS$SERI AL BEG N

47 doj =1, jm

48 wite(*,'(16i5)') (x(i,j),i=1,im
49 end do

50 CSMS$SERI AL END

51

52 CSMS$PARALLEL END

53 return

54 end

Examplga5-6 M odified version of Example4-4 that passeslower and upper boundsinto subroutine
physi cs sothat it doesredundant computationsfor one point in the halo region for each dimension and
for each direction.

Since the cdl to physi cs is now contained within both a TO LOCAL and HALO COMP
directive, the effect is to change the lower and upper bounds passed to the subroutine so thet it
will do redundant computations for one point in the halo region for each direction, for each
decomposed dimension. Fgure 5-14 shows the new table of lower and upper bounds (compare
to the table n Fgure 4-1). Now, following the cal to physi cs, variable y contains vaid data
one point into the hao region. Consequently, the loop a lines 40-44 produces the correct
answer.

Processor Decomposed Size Lbound Ubound

dimension
P1 1 6 1 5
P1 2 5 1 4
P2 1 6 2 6
P2 2 5 1 4
P3 1 6 1 5
P3 2 5 2 5
P4 1 6 2 6
P4 2 5 2 5

Figure5-14 Table of sizes, lower boundsand upper boundsfor Example5-6. Comparethelower boundsand
upper boundsto thevaluesin thetablein Figure4-1. Thesizesareunchanged.

91

5.3 Debugging Adjacent Dependencies. CHECK_HALO

The andyss of adjacent dependencies in a serid code and the process of accurately placing
EXCHANGE and HALO_COMP directives are highly prone to error. To help the user track
down such erors, the CHECK HALO directive and associated SMS CHECK HALO
environment variable can be used to check if dl or pat of a hdo varidble is up-to-date. Suppose,
in Example 5-4, the user forgot to include the HALO_COMP directives on lines 43 and 48.
When the program is run, it does not produce the correct answer for ysum The user can observe
that the loop on lines 52-54 requires one point of the lower and upper hao regions of b and ¢ up-
to-date. To check this assumption, the following directive can be added at line 51:

CSMB$CHECK_HALQ(b<1: 1>, c<1:1>, 'LOOP 52')

If the SMS CHECK _HALO is set to "ON", the generated code checks if the afore-mentioned
hado points are up-to-date. In this case, since the halo regions are not up-to-date, the SMS
program will generate the following error message and terminate:

LOOP 52 Halo check failed for var : b

Suppose the HALO_COMP directives are included as shown on lines 43 and 48. This time the
check passes so no error messages are generated and the program continues. Suppose the user
includes the HALO _COMP directives on lines 43 and 48 and specifies the CHECK_HALO
directive asfollows:

CSMS$CHECK_HALO(b, ¢, 'LOOP 52')

This form of the directive tdls SMS to check the entire hado region. Since, for the lower and
upper hdo regions, only one of the hdo points are up-to-date, the program will terminate with
the same error message.

The directive can be added to the code on a permanent bass. When SMS CHECK _HALO is
“ON”, CHECK_ HALO adds costly communication. However, if the SMS CHECK HALO
environment variable is st to something other than "ON" then the halo checks are skipped;
maximizing performance. If, after a code change, the program generates the wrong answer, the
halo checks can be turned back on to help isolate the problem.

92

6 Handling Complex Dependenciesusing TRANSFER

Section 2.7 introduced the TRANSFER directive and explained how it could be used to handle
complex dependencies in more than one dimenson. In Section 6.1, we show how TRANSFER
can be used when ether the source or destination array are non-decomposed. In Section 6.2, we
examine how TRANSFER can be applied to the paralldization of spectrd NWP models.

6.1 Further Details about TRANSFER

While TRANSFER can be used to generate communications to transpose two arrays decomposed
in one or more dimensions, it can dso be used when ether the source or destination arrays are
not decomposed. If the dedtination aray is not decomposed but the source is then the
TRANSFER directive effectively implements a “gather” of the source into the dedtination as
shown in Fgure 6-1. After the transfer, the entire array is replicated on each process. Since the
locd data for each process must be communicated to al other processes, this operation can be
quite expensive.

“sour ce’ E “destination”

“sour ce” :|l> “destination”

Figure 6-1 Schematic of the behavior of TRANSFER when the source array is decomposed and the
destination array is NOT decomposed. The effect is to “gather” the process-local data from the source array
into the globally sized destination array.

If the source array is not decomposed but the destination array is decomposed then TRANSFER
performs an "extract" of data from the source into the dedtination as shown in Figure 6-2. Note
that no communication is needed in this case snce each process has access to al needed data to
begin with.

93

“source’ “destination”

“sour ce’ “destination”

Figure 6-2 Schematic of the behavior of TRANSFER when the source array is NOT decomposed and the
destination array is decomposed. The effect is to “extract” the appropriate data from the globally sized
sourcearray into the process-local destination array.

Asin the case of EXCHANGE, TRANSFERS can be aggregated as follows to reduce latency:
CSMS$TRANSFER(<sourcel, destinationl>, <source2, destination2>) BEG N
Serid code here

CSMS$TRANSFER END

Some dependencies make decompodtion in any dimenson difficult. The program in Example
6-1 below shows how TRANSFER can be used to avoid pardldization of such code. The idea is
to use TRANSFER to gather the data into global arrays (line 28), execute the complex code on
the globd data (line 35), and then extract from the globa data the correct process-loca pieces
(line 38).

1 pr ogr am TRANSFER2
2 implicit none

3

4 i nteger im

5 par anet er (i m=60)
6

7 integer jm

8 par anmet er (j m=90)
9
10 i nteger km
11 par anmet er (kneb)
12

94

13 CSMS$DECLARE_DECOMP(DECOVP_|J, <im 2, jm 2>)

14

15 CSMs$DI STRI BUTE(DECOWP_IJ, im BEG N

16 real u(km imjm

17 CSMsS$DI STRI BUTE END

18

19 CSMS$I NSERT real u_global (kmimjm
20

21 C BEG N

22

23 CSMS$CREATE_DECOWP(DECOWP_I J, <imjnp, <0, 0>)
24

25 cal | manageabl e_dependenci es(u)

26

27 C This is a "gather".

28 CSMS$TRANSFER(<u, u_gl obal >)
29

30 C parallelize |ater, maybe
31 CSMS$REMOVE BEG N

32 call nasty_dependenci es(u)

33 CSMS$REMOVE END

34

35 CSMS$I NSERT call nasty_dependenci es(u_gl obal)
36

37 C This is an "extract".
38 CSMS$TRANSFER(<u_gl obal , u>)

39

40 call nore_manageabl e_dependenci es(u)
41

42 end

Example 6-1 Example of how TRANSFER can be used to avoid par alldization of code containing complex
dependencies.

Notice this variation of the TRANSFER syntax does not have a BEGIN and END directive (no
serid code is replaced in this case). This example illustrates how SMS can be used to pardldize
a program in pieces while ill producing the correct answer. If the subroutine
nasty_dependenci es consumes a smdl amount of serid run-time and the pardld code
need only scade to a few processes then the modeler may choose never to pardldize this routine.
The INSERT and REMOVE directives are used to replace the serid code that references u with
code that references u_gl obal . These directives will ke explained in Section 8.2. Section 8.1
will show how to avoid this pardldization even more easly usng the SERIAL directive,
athough possibly at the cost of performance.

6.2 Applying TRANSFER to Spectral NWP Models

Many spectrd NWP models have multiple phases of computation that repeat in a fixed pattern.
Phases often have different optimal decompositions, so performance may be maximized by usng

95

multiple decompostions and transferring between them. Congder the case of one dimensiond
decompositions for these modds. The physica parameterizations contain complex dependencies
in the verticd. This makes it efficient to decompose in one of the horizonta dimensons. At the
same time, many computer system vendors provide highly optimized assembly FFT libraries that
far out-perform anything that can be done with hand-tuned Fortran code. Taking advantage of
this serid code requires decomposing in a dimenson other than i . So, typicdly, the data are
decomposed in the | dimengon during physics and FFT computations. This is decompostion
"d' dready seen in Fgure 3-1. The Legendre transformations contain complex dependencies in
the | dimendon. Therefore, a second decompostion in either i (decompostion "b" in Fgure
3-1) or k (decompostion "c' in Figure 3-1) is needed for optima peformance during these
cdculations. The TRANSFER directive provides the means to transpose the data from
decompostion "a"' to ("b" or "c") and back again.

A future rdease of this users guide will incude an example illusrating how TRANSFER can be
used to help paralelize a smple spectra code.

96

7 Handling Global Dependencies Using REDUCE

In Section 2.3, we saw how the REDUCE directive was used to implement communication
needed to do globd summations and maxima. In this section we examine other forms of the
REDUCE directive. In addition to globd summations and maxima, the REDUCE directive can
be used to generate globa minima Reductions of arays are dso supported. Section 7.1
discusses these points. As we will see, the form of REDUCE introduced in Section 2.3 (which
will be referred to as "Standard Reductions”) does not necessarily produce the bit-wise exact
same answer as the serid code for globd summations of floating point numbers. Section 7.2
introduces a second form of REDUCE caled "Bit-wise Exact” that does produce the bit-wise
same answer, regardless of the number of processes.

7.1 Moreon Standard Reductions

Example 7-1 shows additional examples of standard reductions. Globa minima are generated by
gpecifying the keyword M N (line 52). Also notice that reductions can be aggregated in the
same way as exchanges (line 50). One of the variables reduced is the non-decomposed array
xsum(line50). The summation of x s umlooks like the following:

Xsum gl obal (1)
Xsum gl obal (2)

Xsumlocali (1) + Xsumlocaly (1) + ..
Xsum_local1 (2) + Xsum.localz (2) + ..

where Xsum | ocal p(j) is the vaue of processlocd xsum(j) on process P and
Xsum gl obal isthevaueof xsumafter the globd summation is complete.

1 program REDUCTI ONS
2 inmplicit none

3 i ncl ude 'basic.inc'
4

5 im= 50

6 jm= 2

7

8 CSMS$CREATE_DECOWP(DECOVP_I, <inp, <0>)
9
10 call DO_THEM
11
12 end
13
14 subrouti ne DO _THEM
15 implicit none
16 i ncl ude 'basic.inc'
17

18 CSMS$DI STRI BUTE(DECOWP_I, <i nP) BEG N
real x(imjm

=
©

97

20 real y(imjm
21 CSMS$DI STRI BUTE END

22

23 real xsum(jm

24 real ysum

25 real xmn

26 real xmax

27

28 i nteger i

29 i nt eger j

30

31 open (10, file="reduce_data', form" unformatted')
32 read (10) x, y

33 cl ose(10)

34

35 CSMS$PARALLEL(DECOWP_I, <i>) BEA N
36 xsum = 0.0

37 ysum = 0.0

38 xmax = x(1,1)

39 xmn = x(1,1)

40

41 doj =1, |jm

42 doi =1, im

43 xsum(j) = xsum(j) + x(i,j)
44 ysum = ysum + y(i,j)

45 xmax = max(xmax, XxX(i,j))
46 xmn = mn(xmn, x(i,j))
47 end do

48 end do

49

50 CSMS$REDUCE(xsum ysum SUM

51 CSMS$REDUCE(xmax, MAX)

52 CSMS$REDUCE(xmi n, M N)

53

54 print *

55 print *, 'd obal val ues'

56 doj =1, jm

57 write(*,100) j, xsum(j)

58 end do

59 write(*,150) ysum

60 write(*,200) xmax

61 write(*,300) xmn

62

63 100 format('j ', i2, ' xsum=", F13.5)
64 150 format('ysum =", F13.5)

65 200 format('xmax = ', F13.5)

66 300 format('xmn ="', F13.5)

67

68 CSMS$PARALLEL END

69

70 return

71 end

Example 7-1 Program showing additional examples of how the REDUCE dir ective can be used.

98

If we were to modify Example 7-1 so that the j dimengon is dso decomposed then xsum would
be a decomposed variable. In this case, the reduction of xsumwould FAIL because SMS does
not currently support reductions that produce decomposed varigbles. This would require doing

the reduction over a subset of the processes. Support for such reductions will be added in a
future SMS release.

When run with 2 processes, program REDUCTIONS yidds the following results:

d obal val ues
j 1 xsum = 1258. 28589
j 2 xsum = 1310. 71448
ysum = -2464. 28540
Xmax 100. 00000
Xm n -100. 00000

However, when run with 4 processes, the results are :

d obal val ues
j 1 xsum = 1258. 28577
j 2 xsum = 1310. 71436
ysum = -2464. 28613
Xmax 100. 00000
Xm n -100. 00000

Notice that the values for xsumand ysum are dightly different between the 2 and 4 process
runs. Wewill now see why thisisthe case.

7.2 Bit-wise Exact Reductions

The differences in results in Example 7-1 are due to round-off error in the floating point addition.
The numbers are added in a different order in the 4 process case as compared to the 2 process
case because, as discussed in Section 2.3.3, the sums are firg computed localy before being
combined. In NWP modes (which are non-linear systems), if the globad sums feed back into the
man modd eguaions, these dight erors can grow and propagate; potentidly yielding
completely different modd predictions for runs with differing numbers of processes.

For testing purposes, it is useful to avoid these round-off errors. To do this, SMS offers a form
of REDUCE that produces the bit-wise exact same answer for any number of processes.
Example 7-2 below shows how thisworks.

1 pr ogr am EXACT_REDUCTI ONS
2 implicit none

3 i ncl ude 'basic.inc'

4

5 im= 50

6 jm= 2

7

8

CSVB$CREATE_DECOMP(DECOMP_I, <i np, <0>)

99

9

10 call DO _THEM

11

12 end

13

14 subrouti ne DO_THEM

15 implicit none

16 i ncl ude 'basic.inc'

17

18 CSMS$DI STRI BUTE(DECOWMP_I, <i nP) BEG N
19 real x(imjm, y(imjm
20 CSMs$DI STRI BUTE END

21

22 real ysum

23

24 i nt eger

25 i nteger j

26

27 open (10, file="reduce_data', form="unformatted')
28 read (10) x, y

29 cl ose(10)

30

31 CSMS$PARALLEL(DECOWP_I, <i>) BEA N
32

33 CSMS$REDUCE(<y, ysunk, SUM BEG N
34 ysum = 0.0

35 doj =1, jm

36 doi =1, im

37 ysum = ysum + y(i,j)
38 end do

39 end do

40 CSMsS$REDUCE END

41

42 print *

43 print *, 'd obal val ues
44 write(*,150) ysum

45

46 150 format('ysum= "', F13.5)
47

48 CSMS$PARALLEL END

49

50 return

51 end

Example 7-2 Program illustrating the bit-wise exact form of the REDUCE directive.

The modified REDUCE syntax can be see on lines 33 and 40. The syntax requires a BEGIN and
END directivee. The BEGIN directive ligs the varidble being summed (y) and the resulting
globd sum (ysum). The keyword SUM is a0 included but is in generd, optiond since this
verson of REDUCE only supports globa sums. The serid code between the two directives
MUST sum y and dore the result in ysum SMS replaces these caculations with code that
gathers each processs piece of y into a globdly-szed (replicated) variable and then sums the

100

result in the correct order. Conceptudly, the generated pardlel code would look like the
following:

call GATHER(y, y_gl obal)
ysum = 0.0
doj =1, jmgloba
doi =1, imgloba
ysum = ysum + y_gl obal (i,j)
end do
end do

The "gathe™ operation is done in the same way as TRANSFER was used to gather variables as
discussed in Section 6.1. Since the gather operation requires communicating the entire contents
of y to al processes this form of globd sum is sgnificantly less efficient then the "Standard”
form. Inthat case, only the process-locd scaar sums were communicated to al the processes.

Even in the bit-wise exact form, the REDUCE directive will only produce bit-wise exact sums if
an ewironment variable cdled SMS BITWISE is st to the vdue EXACT. Running
EXACT_REDUCE in a c-shdl environment might look asfollows.

>> setenv SMS_BI TW SE EXACT

>> snsRun 2 exact _reduce

SMS: BI TW SE EXACT reductions will be used when requested.
G obal val ues

ysum = -2464. 28418

Notice that the message printed by SMS regarding reductions now indicates that bit-wise exact
reductions will be used.

If SMS BITWISE is NOT st to EXACT then the effect of the REDUCE directive is the same as
in the "standard” reduction; each process computes a locad sum of y and the resulting scalars are

summed across the processes.

>> setenv SMS_BI TW SE | NEXACT
>> snmsRun 2 exact _reduce

SMS: Standard reductions will be used.
d obal val ues
ysum = -2464. 28540

Notice that the answer is the same asthat seen in Example 7-1 for the 2 process case.

An important subtle point to make about the bit-wise exact syntax is that the REDUCE
BEGIN/END directives and enclosed code MUST be contained within a PARALLEL region.
Otherwise, in Example 7-2, when SMS BITWISE is NOT st to EXACT, the global versons of
the loops darting at line 35 would execute even though y is decomposed; generating an out-of-
bounds eror. In actudity, SMS detects this mistake and generates the following syntax error

Mmessage:

101

Bit-w se exact reductions nust be in a parallel region.

In summary, the "bit-wise exact" form of globa summation is vauable for testing purposes,
particularly for non-linear sysems. However, for long modd runs, when optima performance is
important, the "sandard® form of REDUCE will likdy be more gppropriate because it is much
fagter. The programmer can use the bit-wise exact form of REDUCE in the code and then decide
a run-time, with the SMS_BITWISE environment variable, which reduction to use.

102

8 Other Directives

There will be ingances where the SMS directives seen 0 far ae not sufficient to pardleize a
section of code. Severa directives are introduced to handle these cases. They are SERIAL,
INSERT, REMOVE, and IGNORE. These are usudly the directives of last resort.

8.1 SERIAL

Many cases where the previoudy discussed SMS directives can not be easly applied to a piece
of serid code occur in portions of modds where efficient performance is not criticd. One
example is initidization. For long modd runs, the effects of inefficient code during initidization
become negligible. Diagnogic print messages are another case. If the user can turn off
diagnogtic messages when high performance is needed then the presence of inefficient pardld
code that generates these messages does not pose a problem. We saw a third case in Example
6-1 where it may be acceptable to leave a piece of the origind code un-pardldized because its
computations represent only asmall fraction of the total run-time of the program.

The SERIAL directive is the easest way to generate code that produces the right answer in these
cases. The directive defines a region over which serid computations will be done. The directive
looks as follows:

CSMS$SERI AL BEG N
Code to run serially

CSMS$SERI AL END

Fundamentally, the code contained between the SERIAL BEGIN and END directives is executed
by one processor; just as if the code were being run seridly instead of as part of a parald SMS
program. For the code to produce the correct answer, it must operate on global, not decomposed
arays. Therefore, any decomposed arrays referenced within the serid region must be gathered
into global equivalents before the desgnated processor executes the code. After the code is
executed, any of these gathered globa arrays that are modified must be scattered back to dl the
processes. In addition, any nontdecomposed varidbles that have been modified must be
broadcast to al the processes. Since determining what data have been modified is non-trivid,
paticularly in the case whee they ae modified via subroutine cdl, SMS currently
gahergscatters dl decomposed variables and broadcasts al non-decomposed variables
referenced in the code between the SERIAL BEGIN/END. This communication causes the code
to run even more dowly than the origina serid code.

In Example 8-1, x and y ae decomposed while z is not. The subroutine cdls a lines 39-40
reed in x and z wusng C language routines. These routines cannot be handled by SMS. The
print statement at line 41 could be handled by usng TRANSFER to gather y into a globd
vaigble (cdl it y_gl obal) and then printing y_gl obal (2,2). However, application of the

103

SERIAL directive is Smpler. PPP generates code that gathers x and y into globd variables. A
designated processor then executes the code at lines 39-41. Findly, the generated code scatters
x and y and broadcasts the value of z. When high performance is desired, the user can avoid
this poorly performing code by setting ENABLE _DIAGSto fdse.

[Include file: serial.inc]
1 integer imjm
2 conmon /sizes_com imjm
3 CSMS$DECLARE_DECOMP(DECOWP_I J)

[Source file: seriall. f]

1 program SERI AL
2
3 i nclude "serial.inc'
4
5 i nteger i
6 i nteger j
7
8 im=5
9 jm= 4
10
11 CSMS$CREATE_DECOWP(DECOVP_1J, <imjnme, <0, 0>)
12
13 call DOIT
14
15 end
16
17 subroutine DO IT
18 i nclude 'serial.inc'
19
20 CSMsS$DI STRI BUTE(DECOWP_I J, <imk, <jnp) BEG N
21 real x(imjm
22 real y(imjm
23 CSMs$DI STRI BUTE END
24 real z
25 | ogi cal ENABLE_DI AGS
26 ENABLE_DI AGS = .true.
27
28 open(10, file="yin', form=" unformatted')
29 read(10) y
30 cl ose(10)
31
32 C Sone parallel conputations
33 C
34 C
35 C
36
37 i f (ENABLE_DI AGS) then
38 CSMS$SERI AL BEG N
39 call READ_2D ARRAY_USI NG C(x, im jm
40 cal |l READ_SCALAR USI NG C(z)
41 print *, 'y(2,2), z ', y(2,2), z

42 CSMS$SERI AL END

104

43 end if
44 C More parallel calculations

45 .
46 .
47 return
48 end

Example8-1 A sample program showing how the SERIAL directive can be used to generate correct parallel
codein asimple fashion when other SM Sdirectiveswill not suffice.

Example 8-2 shows a modified verson of Example 6-1 that uses the SERIAL directive. The
solution that uses the SERIAL directiveis much smpler.

1 pr ogr am TRANSFER3

2 inmplicit none

3

4 integer im

5 par anet er (i m=60)

6

7 i nteger jm

8 par anet er (j m=90)

9

10 i nt eger km

11 par anet er (knmeb)

12

13 CSMS$DECLARE DECOVP(DECOWVP_IJ, <im 2, jm 2>)
14

15 CSMsS$DI STRI BUTE(DECOVP_IJ, im BEG N
16 real u(km imjm

17 CSMS$DI STRI BUTE END

18

19

20 C BEG N

21

22 CSMS$CREATE_DECOMP(DECOWP_|J, <imjme, <0, 0>)
23

24 cal | manageabl e_dependenci es(u)
25

26 C parallelize |ater, maybe
27 CSMS$SERI AL BEG N

28 call nasty_dependenci es(u)

29 CSMS$SERI AL END

30

31 call nore_manageabl e_dependenci es(u)
32

33 end

Example8-2. Simpler version of Example6-1 usingthe SERIAL directive.

105

Although ussful, the serid directive has some important redrictions. One is that subroutines
cdled from within a serid region may not modify common block varigbles unless they are
passed as arguments. So suppose in Example 8-1, we insert

call subl

after line 38. Further supposesub1 looksasfollows.

subroutine subl
real xc

common /coml/ xc
xc = 2.0

return

end

PPP has no way of knowing that xc has to be broadcast before the end of the serid region
because it does no inter-procedura andlyss. If xc were an argument passed to subl1 then the
SERIAL directive could be used.

A second case where a SERIAL directive cannot be used is shown in Example 8-3. Here, the
congtant 2 is passed to subroutine DO | T. Since DO I T cdls a C routine that uses dummy
agument n, a SERIAL directive would normdly be required to handle this However the
SERIAL directive generates a broadcast of dummy argument n. This broadcast will attempt to
write to variable n. Since varidble n is the congtant 2, the result will be, a best, a core dump.
The solution would be to assign 2 to a variable in the main program and pass the variable to
subroutine DO I T.

1 program SERI AL

2

3 i nclude '"serial.inc'
4

5 i nteger i

6 i nteger j

7

8 im=5

9 jm= 4

10

11 CSMS$CREATE_DECOWMP(DECOWMP_IJ, <imjm>, <0,0>)
12

13 call DO IT(2)

14

15 end

16

17 subroutine DO_IT(n)
18

19 integer n
20

21 CSMS$SERI AL BEG N
call c_routine(n)

N
N

106

23 CSMS$SERI AL END

24
25 return
26 end

Example8-3 Example code where use of the SERIAL directive generates parallel codethat failsto run
properly.

8.2 INSERT and REMOVE

Two directives, INSERT and REMOVE, are used to modify source code directly. Working
together, these directives are very useful for trandating code that cannot be converted using other
SMS directives. Each line that the user wishes to insert must be prefaced by INSERT. The
inserted code that follows must adhere to Fortran 77 fixed format rules. REMOVE removes dl
text between the directive' s BEGIN and END statements.

CSMS$REMOVE BEG N

Code that will not be executed in the SMS program

CSMS$REMOVE END

CSMS$I NSERT Code that will be executed in the SMS program

Example 6-1 showed how these directives can be used.

83 IGNORE

IGNORE is another directive used to manipulate code directly. This directive ingtructs PPP to
ignore any text between the directives BEGIN and END. This dlows the user to prevent
modifications of the serid code by PPP.

CSMS$PARALLEL(dh, <i >, <j>) BEG N

do 200 i =1, nx

do 200 j=1, ny
z(i,j, k) =z(i,j,k)+ y(i,j, k)

200 conti nue
CSMS$1 GNORE BEG N

do 300 i=1,3

call smooth(z)

300 conti nue
CSMS$I GNORE END
CSMS$PARALLEL END

Example8-4. Using IGNORE to prevent PPP trandation.

107

In Example 8-4, the encdlosing pardld region around the 200 loop will ensure trandation of the
loop variable “i” to a loca vaue. However, we do not wish to trandate the 300 loop because “i”
is used to iterate on the function “smooth”. To avoid trandation of this loop, the IGNORE is
used. Optiondly, the pardld region could be ended before the 300 loop and then started again
after the iteration loop ends.

108

9 1/0

One of the most powerful features of SMS is its ability to support most types of /O without
requiring any directives. In paticular, this is the case for unformatted I/O of scdars and
complete arrays, as will be discussed in Section 9.1. The fact that communication patterns for
I/O of decomposed and non-decomposed arrays differ is hidden from the programmer. In ether
case, SMS automatically generates the communication needed to read or write data to or from
disk in the same sequence as the serid code would have done it, regardiess of the number
processes sed. By default, SMS assumes the data are stored in native Fortran binary format on
disk. However, SMS provides environment variables that can be set to change this default as
discussed in Section 9.1.

The 1/O of pieces of arays do require specid attention as will be discussed in Section 9.2.
Formatted input is, for the most part, handled automaticaly. However, there ae some
limitations that will be described in Section 9.3. As discussed in previous sections, formatted
output sometimes requires the programmer to specify if and how the data should be printed.
SMS dlows the user to make these decisons by providing severd print modes as will dso be
discussed in 9.3, Findly, SMS offers severd easy-to-use methods for improving 1/0O
performance as discussed in Section 9.4.

9.1 General Unformatted I/0O

Figure 9-1 illustrates dependencies for read and write of a smple one-dimensond decomposed
aray. During a read, data from a single file must be parceled out to each process. This type of
communication pattern is cdled "scater”. During a write, data from each process must be
combined in the proper order and written to disk. This type of communication pattern is a
different form of "gathe" than that seen for TRANSFER and bit-wise exact REDUCE. In this
case, ingdead of gathering the data into a globd varidble that is replicated in memory on dl
processes, it is gathered into a single file on disk. "Proper order™ means the data must be read
from or written to disk in the same sequence as the serid code would have done it. Though it
gopears quite smple in Fgure 9-1, the data reorganization required to match serid ordering in
files can be quite complex, especidly for two-dimensond decompostions or when the
decomposed arrays have hao regions (Figure 9-2). Additiondly, when variables being input
have hao regions associated with them, these regions will be automaticaly updated by SMS.

109

Read

real x(15) [ifffj

« DI [[[

12345 12345 12345
P1 P3
Write

P2
Figure 9-1 Schematic of the input and output of a decomposed array. On input, one process reads the global

data from disk. The appropriate sections of the global array are then “scattered” to each process. On
output, the decomposed data ar e gathered into a global array and then written to disk.

110

Parallel Memory Layout

P3 P4

Halo Region

Serial File Data Layout

BN N N .

Figure 9-2 Schematic of the re-ordering required to write and read two-dimensionally decomposed data to
disk in the same order as the serial code would write it. Special care has to be taken to write the only the
interior of each processlocal domain and not the halo data. The halo regions are filled during the read
operations.

111

Fgure 9-3 illugtrates dependencies for read and write of a non-decomposed varigble. During a
read, a copy of data from a single file must be sent to each process. This type of communication
pattern is called "broadcag”. During write, it is only necessay to write data from a sngle
process because each process should have an identical copy of the varigble.

real g
/ 1 \ead(broadcast”)
:
P1 P2 P3

Write(“root”)

Figure 9-3 Schematic of the input and output of a non-decomposed array. On input, one process reads the
data from disk. The data are then replicated on all other processes. On output, a designated “root” process
writesthe datato disk.

Example 9-1 demonstrates unformatted 1/0 of both decomposed and non-decomposed variables.

[Include file: io0.inc]
integer im jm

1
2 comon /sizes_com im jm
3 CSMS$DECLARE_DECOVMP(DECOWP_I J)

112

[Source file: binary.f]

O©CoO~NOUL WN P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

program binary_io
i nclude "io.inc'
im= 10
jm=15
CSMS$CREATE_DECOVP(DECOVP_I J, <imjnp, <1,0>)
call wite_data
end

subroutine wite_data
i nclude "io.inc'
integer i, j
real scale
CSMs$DI STRI BUTE(DECOWP_1 J, <inmp, <jnmp) BEG N
integer x(imjm, y(imjm
CSMs$DI STRI BUTE END
CSMS$PARALLEL(DECOWP_I J, <i >, <j>) BEG N
do j=1,jm
do i=1,im
CSMS$TO GLOBAL(<1,i>, <2,j>) BEGN
x(i,j) = (100 * i) +]
y(i,j) = mod(i,2)
CSMS$TO _GLOBAL END

end do
end do
CSMS$PARALLEL END
scale = -1.0

open (17,file="iol_out.dat',form" unformatted')
write (17) x, y, scale
close (17)

open (18,file="iol out.dat',form=" unformatted')
read (18) x, y, scale

cl ose (18)

return

end

Example9-1 Program that does output of both decomposed and non-decomposed data. No additional
directivesarerequired for the correct output to be produced, regardlessof the number of processes.

In Example 9-1, SMS automaticaly trandates al the read and write Statements for both
decomposed arrays x and y and non-decomposed scalar scal e to the appropriate pardld 1/0
operations. When automatically generating pardlel 1/0 operations, PPP uses information in the
DISTRIBUTE directives to determine how to generate communications to satisfy the 1/0
dependencies. Notice that any types of decomposed or non-decomposed variables can be mixed
in a sngle write or read statement. It is not necessary to reorganize exiging serid read or write
satements to take advantage of automatic paralllization by SMS.

By default, SMS assumes unformetted files are stored in native FORTRAN binary format. The
default behavior can be modified using the following environment variables:

113

SMS_READ_FORMAT
SMS_WRI TE_FORMAT
SMS_I O_FORMAT

If the wuser specifies both SMS IO FORMAT and SMS READ FORMAT then
SMS READ_FORMAT takes precedence.

If the user specifies both SMS IO FORMAT and SMS READ FORMAT then the following
warning will be printed a the beginning of the run:

SMS: Warning! SMS_| O FORMAT ignored; SMS _READ FORMAT takes precedence.
The same holdsfor SMS WRITE _FORMAT.

The currently available (case insengitive) formats are:

| BM
SUN

SGl

FUJI TSU

HP

DEC

COVPAQ

| A32

VP

MPI _EXTERNAL
EXTERNAL

SV

Note that, in many cases, file formets with different names are actudly the same format. For
example, SGI and SUN are redly the same format. It is dso important to point out that MPI,
MPI_EXTERNAL, EXTERNAL, and SMS dl refer to the portable MMl 1/0 externad format.
The advantage to using this format is that any file written by an SMS program may be read by
any other SMS progran on any other machine. This is true regardless of the number of
processes used on either machine because SM S preserves seriad data ordering.

To convert data files from one format to another, smply write a seria program tha reads and
writes the data, compile and link with SMS and then st the afore-mentioned environment
variables gppropriatdly.

9.2 Unformatted 1/O of Elements of Decomposed Arrays.

Some NWP models require 1/0O of pieces of decomposed arrays. We saw in Section 8.1 how the

SERIAL directive could be used to do this. Example 9-2 shows a more efficient solution to this
problem.

114

O©CO~NOO U WNPE

[any
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

program WRI TE_POI NTS

include '"io.inc'
im= 10
jm=5

CSMS$CREATE_DECOVP(DECOVP_I J, <imjnp, <1,0>)
call compute
end

subrouti ne compute
include '"io.inc'
CSMS$DI STRI BUTE(DECOWP_1J, <inmp, <jnp) BEG N
i nteger x(imjm
CSMS$DI STRI BUTE END

open (10, file="iol out.dat', form" unformatted')
read (10) x

cl ose(10)

call write_point_data(x)

return

end

subroutine wite_point_data(x)
i nclude "io.inc'

CSMS$DI STRI BUTE(DECOWMP_1J, <inp, <jnmr) BEG N
integer x(imjm
CSMS$DI STRI BUTE END

CSMS$I NSERT i nteger xpt(2), ipt
CSMS$I NSERT do ipt=1,2

CSMB$I NSERT xpt (ipt) = O
CSMS$I NSERT end do

CSVB$PARALLEL(DECOVP_I J) BEG N
CSMB$GLOBAL | NDEX(1, 2) BEG N

CSMS$! NSERT xpt (1)
CSNVS$| NSERT xpt (2)

x(1,1)
x(im2,jm?2)

CSMS$GLOBAL_| NDEX END
CSMS$PARALLEL END

CSMS$REDUCE(xpt , SUM
open (17,file="io02_out.dat',form=" unformatted"')

CSMS$SREMOVE BEGQ N

wite (17) x(1,1), x(im2,jm?2)
CSMS$SREMOVE END
CSMS$I NSERT wite (17) xpt

close (17)
return

115

55 end

Example 9-2 A program that illustrateshow SM 'S can be used to output pieces of decomposed arrays
efficiently.

In Exarple 9-2, subroutine wri t e_poi nt _dat a outputs two data points of aray x to
unformetted file i 02_out . dat . Since both dimensons of aray x are decomposed, it is likey
that the two data points will not be on a single process. Other processes may have no data to
write. The code at lines 31-33 initidizes xpt to O for every process. The GLOBAL_INDEX
directive ensures the code on lines 38-39 assigns to xpt the correct values to be written only for

the procesy(es) that contain(s) the correct data points. Findly, the REDUCE directive at line 44
goresin xpt the correct answer for every process by summing the zero and non-zero values.

For example, suppose after line 38, xpt(1) looks asfollows:

Process 1 2
Dat a 0 502

3

0

The REDUCE directive will globdly sum 0, 502 and 0. The resulting sum 602) is stored in
xpt for every process. Now the write statement on line 51 can write the correct value of
x(1,1) todisk.

9.3 Formatted 1/0
9.3.1 Formatted Input

Formatted input including namelids is handled automatically by SMS. The user does not need to
add any directives. The only cavedt is that input variables cannot be decomposed arrays. In this
case, a work-around is to enclose the formatted read dtatements within a SERIAL directive.
Snce formatted reads typicaly occur infrequently during the course of a modd run, this
approach usudly does not incur a significant performance pendlty.

9.3.2 Formatted Output

Formatted output requires further discusson. The smple task of printing a message on the
screen becomes more complicated in an SPMD programming modd. Congder the following
smple print satement:

print *,"'HELLO

There are no cler dandard definitions of what will gppear on the screen when a "pardld” print
gsatement is executed. Will each process print a separate message? Will the separate messages
gopear on different lines on the screen? WIill dl processes be forced to wait until the print is
complete before useful work can continue? If the statement were executed on three processes,
we might see any of the following output:

116

HELLO
HELLO
HELLO
HELLO
HHHEEELLLLLLOOO

HELLHEHLECOLOLLO

During the brief history of pardld computing, each of these posshilities has been implemented
on & least one pardld machine.

SMS gmplifies this Stuaion by providing three "print modes' that dlow the user to control the
behavior of pardld print. The modes are ROOT, ASYNC, and ORDERED. These print modes
are illugrated in the following example and the subsequent discusson Assume, line 18 of
subroutine COMPUTE in Example 9-2 is replaced with:

call print_stat(x)

Subroutine print_gtet is asfollows:

1 subroutine print_stat(x)

2 i nclude "io.inc'

3 i nteger i, |j

4 CSMS$DI STRI BUTE(DECOVP_I J, <inp, <jnp) BEG N
5 integer x(imjm

6 CSMS$DI STRI BUTE END

7 i nt eger xmax

8 CSMS$PARALLEL(DECOWP_IJ, <i >, <j>) BEGA N
9 xmax = 0

10 do 200 j=1,jm

11 do 200 i=1,im

12 xmax = max(xmax, X(i,j))

13 if (x(i,j).le.101) then

14 CSMS$PRI NT_MODE(ASYNC) BEG N

15 print *,"WARNING x.le. 2101 !'! ' x(i,j)
16 CSMS$PRI NT_MODE END

17 endi f

18 200 conti nue

19 CSMS$PARALLEL END

20

21 CSMS$PRI NT_MODE(ORDERED) BEG N

22 CSMS$I NSERT print *,'DEBUG |ocal maxinmm value ="', xmax
23 CSMS$PRI NT_MODE END

24

25 CSMS$REDUCE(xmax, MAX)

26

27 CSMS$PRI NT_MODE(ROOT) BEG N

28 print *,'maxi nrum value = ', xmax

29 CSMS$PRI NT_MODE END

30 return

117

31 end

Example 9-3 Subroutine showing various examples of use of SM S print modes.

Assume the executable is cdled print_nodes. When the seid code versons of
bi nary_i oandthenpri nt _nmodes arerun, thefollowing is printed on the screen:

>> binary_io
>> print_nodes

WARNI NG x.le.101 !! 101
maxi mum val ue = 1005

When the pardld codes are run on 1 process, the following is printed on the screen:

>> spsRun 1 binary_io_parallel

>> smsRun 1 print_nodes_parallel

WARNI NG x.le. 101 !! 101
DEBUG | ocal maxi mum value = 1005
maxi mum val ue = 1005

For 4 processes:

>> smsRun 4 print_nodes_parall el
WARNI NG x.le.101 !! 101

DEBUG. | ocal maxi num value = 503
DEBUG. | ocal maxi num value = 1003
DEBUG. | ocal nmaxi num value = 505
DEBUG. | ocal maxi mum value = 1005
maxi mum val ue = 1005

The print satement on line 28 in Example 9-3, is printed usng the ROOT print mode. This
mode causes a single message to be printed on the screen. Only one system-dependent
designated process will execute the print statement; the others will skip it and can immediatdy
continue with useful computations. The ROOT print mode will cause the pardld code to print
the same messages as the seria code in most cases.

The print statement on line 22 is executed usng the ORDERED print mode. This mode causes
one message to be printed on the screen for each process and guarantees that the messages
always appear in the same order. It is nost useful for debugging purposes. However, in order to
guarantee message ordering, no process can continue until all processes have executed the print
gatement. This means care must be taken that all processes will ALWAYS execute an ordered
print or the program will hang. For, suppose we use the ORDERED print mode at line 14:

if (x(i,j).le.101) then
CSMS$PRI NT_MODE(ORDERED) BEGQ N
print *,"WARNING x.le. 101 !! ' x(i,j)
CSMS$PRI NT_MODE END

118

endi f

In this case, we see the same results for the one-process run. However, the four-process run
produces the following results:

>> snmsRun 4 print_nodes_parall el
WARNI NG x.le.101 !! 101

DEBUG | ocal maxi num value = 1003
DEBUG | ocal nmaxi num val ue = 505
DEBUG. | ocal maxi num value = 1005

In this case, the program hangs (deadlocks) before the final message can be printed because the
warning print statement is now an ordered-mode print that has been executed by only one
process. The program will wait forever for the other processes enter this print Satement. The
root mode is dso not gppropriate here because the warning message would not be printed if point
101 were not on the root process. In this case deadlock would not occur, but the warning
message would aso not be printed.

The asynchronous mode is the proper mode to use in cases like the printed warning statement on
line 15 (Example 9-3) because there is no guarantee that al processes will execute the print
gatement. In this mode, one message will appear on the screen for each process that executes
the print statement. Like the root mode, there is no process synchronization during asynchronous
prints. As a result, ordering of print statements may vary from one run to the next when
asynchronous mode is used. For example, suppose we use the ASYNC mode for line 22 instead
of ORDERED.

CSMS$PRI NT_MODE(ASYNC) BEG N
CSMS$1 NSERT print *,'DEBUG | ocal maxinmm value ="', xmax
CSMS$PRI NT_MODE END

Running with four processes two times might produce the following results

>> snmsRun 4 print_nodes_parall el

DEBUG. | ocal maxi num value = 1005
DEBUG | ocal maxi num value = 1003
DEBUG. | ocal nmaxi num value = 505
WARNI NG x.le. 101 !! 101
DEBUG. | ocal nmaxi num value = 503
maxi rum val ue = 1005
>> snmsRun 4 print_nodes_parall el
DEBUG | ocal maxi num value = 505
DEBUG. | ocal maxi num value = 1005
WARNING x.le.101 !! 101
DEBUG. | ocal maxi num value = 1003
DEBUG. | ocal nmaxi num value = 503

maxi rum val ue = 1005

119

Note that the asynchronous-mode prints can appear in any order and can even agppear out-of-
order with other non-asynchronous-mode prints. This can be confusing in some cases. Also
important to note is that ASYNC mode does not work properly when the SM'S program is being
run in “serverless’ mode (see Section 9.4.3). The timing of when the print output appears is
unpredictable.

If we remove lines 27 and 29 then there is no specific print mode in the code. In that case, SMS
uses the vdue of environment varisble SMS PUTS MODE. It can be st to ROOT,
ORDERED, or ASYNC. If the environment variable is not defined then it defaults to ROOT.

To implement formatted output of decomposed arays, ether the SERIAL directive can be
goplied or, in some cases the agpproach shown in Exarple 9-2 can be used

120

9.4 1/0O Performance Tuning

This section discusses ways the user of SMS can optimize the 1/0O performance of their codes.
These optimizations require a good understanding of how input and output operaions are

handled in SMS.

vaues for the environment variables used to tune SMS 1/O.

There are two different cases:

SMS_RBS

SMS_RBC

SMS_WBS

SMS_ CLOSE_MCODE

SMS_I OC_SI ZE

SMS_RAN_RSTYLE

SMS_RBS

SM5_RBC

SMS_RAN_RSTYLE

CASE | :
Server/ No Cachers

size of |l argest input
file in bytes divided
by (SMS_RBC-1)
default (16)

si ze of | argest out put
file in bytes

require-flush

N A

file

CASE 11

Input files will fit

Input files will

in server menory

Server/ Cachers

si ze of |l argest input
file in bytes divided
by (SMS_RBC-1)
default (16)

defaul t

require-flush

size of |argest output
File in bytes divided

by the nunber of cache
processes and

mul tiplied by 2

file

NOT fit

(only affects input)

Server/ No Cachers

si ze of largest input
variable in bytes

di vided by (SMS5_RBC-1)
default (16)

one-var

Server/ Cachers

si ze of largest input
variable in bytes

di vided by (SMS5_RBC-1)
default (16)

one-var

Figure9-4: Suggested valuesfor SM S environment variablesthat affect I/O perfor mance,

121

If you wish to ignore this discusson, the following table offers suggested

Serverl ess

N A

defaul t

N A

N A

N A

in server nenory

Serverl ess

defaul t

N A

N A

9.4.1 General Guidelines

Two generd guiddines should dways be consdered to improve both serid and padld 1/0
performance. First, the user should do as little 1/0O as possble. Since I/0O operations do not scde
well, ther effect on padld performance will increese as the number of processes incresse.
What is an indgnificant amount of run-time for 2 processes may be quite sgnificant for 200
Processes.

One optimization that can be very useful is to optiondly turn off dl print datements. Many seid
codes dready dlow users to turn off some or even dl print Satements by setting a flag a
run-time. This may speed up the serid code in some cases. The optimization is very ussful in a
padld code where, on some machines, disabling prints can result in sgnificant performance
improvements. The following code fragment illustrates this common optimization:

if (print_enabled) then
print *,'whatever...'
endi f

In this case, “print_endbled” could be input through a namelist a the beginning of program
execution.

A second genera guiddine to improve 1/0 performance is to combine /O operations whenever
possible. For example,

read(10) u
read(10) v

could be combined into a Sngle read statement:
read(10) u,v

This will maximize the sze of data blocks read from or written to disk and minimize 1/O latency.
Both unformatted and formatted statements should be considered for these optimizations.

9.4.2 TheSMS Server Process

By default, SIS designates an additional process, cdled the server process, to manage the other
processes and to handle dl formatted and unformatted 1/O operations. This alows computations
to be done concurrent with 1/0O operations and can improve the overal performance of SMS
program execution. Fgure 9-5 illustrates a program run using four compute processes and a
SMS server process.

122

SMS Program Execution with a Service Process

o sTssEss s s 71

Figure9-5: Inthisexample, four processesarerequested to run the program. By default, an additional
process, called the server process, will be used by SM Sfor process management and 1/O operations.

9.4.3 Serverless|/O

For smal numbers of processors (less than 8), it may be beneficid to combine the server process
functions with one of the computational processes. This type of operation is caled serverless I/0O
and isillugrated in Figure 9-6.

If serverless 1/O is used, the 1/O functions that would normally be run on a separate process will
be combined with one of the compute processes. Serverless SMS can be requested through an
environment variable given by the command:

>> gatenv SMS SERVER _MODE serverless
On most machines, where there will be a one-to-one correspondence between processes and
processors, serverless 1/0 will improve performance by making one more processor available to

do computations. However, when large numbers of processes are used, program execution will
usudly be faster when a server processis used.

123

Serverless SM S Program Execution

PROCESS:

I

- Computational

I:I SMISI/O Operations

[] 1deTime

Figure 9-6: Anillustration of four SM S processes used to run a program without a server process. In this
example, process P1 must handle both program computationsand SM S server functionsthat include |/O
operations. Whilethese operations occur, the other processeswill beidle.

9.44 TheFLUSH_OUTPUT Directive

The FLUSH _OUTPUT directive is used to optimize output performance; it is only ussful when a
server process is present. During write operations, the 1/0 server process buffers the data to be
output in memory, re-orders the decomposed data into seriad order, and then writes it out in large
blocks to disk. By default, any write to disk will be ddayed until the buffer is full or the file is
closed. When this happens, buffers are "flushed" and their contents written to disk in large
blocks. While buffers are being flushed, any processes requesting 1/0 services will have to wait
until the flush operation is complete. The environment variable SMS CLOSE MODE can be st
to “require-flush” for full user control of when buffers are flushed (unlessthey are full).

Further performance improvement can be gained by controlling when these buffers are flushed
usng the SMS directive, FLUSH OUTPUT. This directive ingructs the SMS 1/0 server
process to flush the buffers immediately. If FLUSH_OUTPUT is placed so no other 1/0O requests
are made during the flush operation, then no process will have to wait for the flush. If any 1/O
request is encountered, it mugst wait until the flush operation is complete thus minimizing the
effectiveness of FLUSH_OUTPUT.

124

The following code fragment shows how this directive can be used:

open (17,file="main_fields.dat',forns unformatted')
wite (17) u,v,wp,t
close (17)

c useful computations ...

open (17,file=" noisture.dat',form=" unformatted')

wite (17) gs,qi,qr,qg, gw
close (17)
CSMS$FLUSH_OUTPUT

¢ nore useful conputation ...

Example9-4. Proper placement of aFLUSH_OUTPUT directive.

In this example, two files are written. As long as no other 1/0O (unformatted, formatted, or print)
operdtions occur while the flush ingruction is being processed, useful computations will proceed
a full speed while data is smultaneoudy re-ordered and written to disk. This ability to overlap
/0 with useful computation is key to achieving scadable 1/0 peformance on many machines.
However, any 1/O dtatement that occurs soon after the flush operation will be sufficient to make
the directive ineffective. For example, when a print datement gppears just after the
FLUSH _OUTPUT, it will force one of the processes to wait until the flush operation completes.
Most likdy, dl other processes will eventudly end up waiting for this process and useful
computation will quickly cometo ahdt until the flush completes

open (17,file="diagnostics.dat',fornF unformatted')
wite (17) x1,x2
close (17)
CSMS$FLUSH_OUTPUT
print * 'bad idea to print sonething here...'
nmore useful conputation

Example9-5. Improper placement of aFLUSH_OUTPUT directive.

9.4.5 Improving Output Performance

To increase the performance of output operations, two options are avalable. First, SMS dlows
the user to desgnate a run-time any number of processes to serve as output cache processors.
For example, Figure 9-7 illustrates a program that is run usng twelve computational processes,
two output cache processes, and a Server process.

125

Computational
Processes

Figure9-7: Anillustration of SM 'S output when cache processes and a server processareused. SM Soutput
oper ations pass data from the computational domain to the cache processes (if specified). Dataisre-ordered
on the cache processes befor e being passed through the server processto disk. Theamount of memory
allocated to the cache processes and the server process can be controlled using SMS |OC_SIZE and

SMS WBSrespectively.

The function of cache processors is to temporarily store data being output so it can be reordered
and then written to disk. The computationa processes can write their data to multiple cachers at
high speeds and dthough these cachers will proceed a reatively dow speeds, tota execution
time is not affected because disk writes can be done a the same time as computations. Further,
cache processes provide more memory capacity to temporarily store the data before it is written
to disk. The number of output cachers can be requested at run-time usng the -smswb option to
the smsRun command. For example:

>> gmsRun Nprocs execname -smswhb <ncachers>

executes a program where npr ocs is the number of computationa processes, execnane isthe
name of the executable, and ncacher s is the number of output cachers to be used in the run.
Refer to Section 10 more details about running an SMS program.

For optimal performance, there should be enough cache processes to store al data to be output at
one time. By default, SMS allocates 8 Mbytes of memory for each cache process. However, the
environment varidble SMS 10C_SIZE is provided to dlow the user to set the amount of memory
(in bytes) they wish to allocate on each cache process. The command:

>> setenv SM'S_|OC_SIZE 1000000

126

will alocate one million bytes of cache space. Since up to 50 percent of the cache space can be
logt to the overhead required to store the data segments, a recommended size for this fidd is
double the sze of the expected output. For example, assume we wish to output the following

array
real* 4 big_array(100,200,300)

It will require 24 Mbytes of memory to output this array (4*100*200*300). This figure should
then be doubled to account for SMS overhead codts. If each cache processor contains 10 Mbytes
of memory avalable for SMS caching, we will need to dlocate five cache processes to output
thisarray efficiently.

A second way to improve output performance is to change the memory alocated to store data
before being written to disk. Since output is dways written to a buffer on the server process,
modifying its 9ze can improve peformance. By default the sSze of this buffer is 256 Mbytes,
however this vaue can be changed through the SMS environment varisble SMS WBS. If write
cachers are not used, then this variable should be set to the size of the largest output file when
possble, otherwise output performance could degrade. When write cachers are used, the default
vaueisusudly sufficient.

9.4.6 Improving Input Performance

The server process is used to read dl formatted and unformatted input data; cache processes are
not used for input. If the data is decomposed, they are scattered to the other processes, if the data
is non-decomposed, it is copied to the other processes.

By default, three environment varisbles can be used to control SMS input peformance
SMS RBS, SMS RBC, and SMS RAN RSTYLE. SMS RBS determines the sze of each
block that will be dlocated to store input variables read from disk. SMS RBC defines the
number of blocks of sze SMS RBS tha will be used for input. Findly, SMS RAN_STYLE
determines if files or individud variables will be input @ one time. Fgure 9-8 illudrates how
these variables are used for input operations.

If a dngle file is input, the environment varidble SMS RBS should be st to the Sze of that file
and SMS RBC should be st to one. If multiple files (eg. Initid conditions and boundary
conditions) are input with differing sizes, SMS RBS should be set to a common factor of the sze
of each input file. For example suppose two files are required; an initid conditions file of sze 53
Mbytes and a boundary conditions of size 16 Mbytes. An approximate common factor for these
two files is 8 Mbytes (8*2=16, 8*6=54). Therefore, good darting vaues would be:
SMS _RBS=8Mbytes, SMS RBC=6.

Usng these variables, the totd size of each input file should be consdered when optimizing for
peformance. For example the execution of a program may be handled with two files: input of

127

initid conditions, followed by the input of boundary conditions. There should be sufficdent
memory on asingle process to store the entire contents of each input file.

Server Process Computational

i | Domain
| SMS RBC=3 I . .
SMS RBS)
T .| Processl
Disk | i |
! ! - Process 2
i | Process 3
§ i | Process4 | !

Figure9-8: All input will passfrom disk, through the server process, to individual pr ocesses within the
computational domain. Two SM S environment variables can be set to control the size of two data structures
within the server process. the number of input buffers(SMS_RBC) and the size of each buffer (SMS_RBS).

If not enough memory is avalable to store dl input on a single process, SMS RAN _RSTYLE
should be et to “one-var”. This will force SMS to read each varidble into a buffer that resdes on
the server process, trandfer that data to the server process for distribution among the compute
processes, and then read the next variable. In this case, the quantity: SMS RBS * (SMS RBC-1)
should be st to the size of the largest input variable.

The techniques described above are useful for reducing execution time when performance

andyss indicates that run-time is limited by 1/O time. Exact vaues of environment variables and
number of cache processes are best determined by experimentation.

128

10 Program Termination

Pardld programs using the SMS run-time sysem require specid handling to ensure al processes
exit normdly. An SMS control process is often used to manage dl child processes that have
been spawned through the smsRun command to execute a program. Two types of program
termination are supported by SMS: a norma exit and an abort. When a program exits normally,
the SMS control process will wait until every processes computations, communications and 1/O
are complete before exiting. A program abort will not guarantee the completion of outstanding
operations or an orderly termination of processes.

10.1 Automatic Code Generation for Termination

By default, PPP will automatically generate code to abort whenever a Fortran “stop” Statement is
encountered. PPP will aso generate a norma exit whenever a program “end” datement is
encountered. Congder the following program:

program main

do ii=0, num.ter
call time_steps(ii,status)
if (status .eq. ABORT) then
print *,’ Model Run failed at iteration: *,ii
stop
endi f
enddo

print *, ' Mdel Run Successfully Conpl eted
st op
end

Example10-1. Automatic Code Generation by PPP will causethis program to alwaysabort.

Since the Fortran “stop” appears before the line before the end program satement, PPP will
generate code to abort the pardld run. During code trandation the following warning message
will aways appear when source contains afortran stop statement:

WARNI NG: Program abort detected.

Since the intent of the origind code in this case is to exit normdly from the program, two actions
can be taken to ensure this happens in the PPP generated source. Either the second “stop”
gatement (above the “end”) should be removed, or the EXIT directive should be used as
illugtrated in the next section.

129

10.2 EXIT Directive

EXIT is usad to contral the run-time behavior of an SMS program. This directive, when inserted
just before a “stop” statement, will instruct PPP to generate code to exit rather than abort. The
proper placement of thisdirectiveisillugtrated in Example 10-2 below:

program main

do ii=0, num.ter
call time_steps(ii,status)
if (status .eq. ABORT) then
print *, ' Mdel Run failed at iteration: *,ii
stop
endi f
enddo

print *,’ Mddel Run Successfully Conpl eted
CSMS$EXI T

st op

end

Example 10-2. Using CSM S$EXI T to override automatic trandations

In this example, a PPP warning message will automaticaly be generated for every stop statement
that is not immediately preceeded by the EXIT directive.

10.3 MESSAGE Directive

MESSAGE, is used to send a message to the user a run-time and optiondly terminate execution
of the program when it is encountered. This directive is ussful when the user wishes to avoid
unnecessary padlelization of code they believe is never executed. Three run-time actions are
avalable to the user of MESSAGE: ABORT, terminates execution after writing the given
message to stderr, WARN writes the given text to stderr, and INFORM writes the text to stdouit.

if (condition_ever_net) then
CSMS$MESSAGE(ABORT, ' COWPS: THI S CODE HAS NOT BEEN PARALLELI ZED BY SMS')
call comps(a, b, c, d, NX, NY)
endi f

Example 10-3. Usng MESSAGE to output run-time messages.

In this example, the programmer believes the subroutine comps is never executed so rather than
padldizing it, MESSAGE is used. Snce ABORT is specified, SMS will terminate the
execution of this program after the message is output to stderr.

130

11 Building a Parallel Program
11.1 Overview

This section describes how to use the Pardld Pre-processor (PPP) to trandate Fortran code into
SMS padld source. Output files, named automaticaly by PPP, will be introduced in Section
11.2. Severa command line options to PPP are described in Section 11.3. In Section 114, a
sample makefile is described which can be used to build a serid or SMS padld code. In
addition, various rdevant compiler and linker options ae discussed in this section. Building
pardld source usng PPP can result in both syntactic and semartic errors that must be corrected.
Section 11.5 will discuss how to interpret these PPP generated messages. Finaly, Section 11.6
will describe compiler errors due to namespace conflicts from PPP generated source.

11.2 PPP Generated Output Files

Output files generated by PPP ae named autometicdly. Include files will be named by
gopending “.SMS’ to the origind file name (eg. par ans. h becomes par ans. h. SMS). All
other source files will be named by appending “_sms’ to the body of the origina filename (eg.
mai n. f becomes mai n_sns. f). Intermediate files are dso generated during the code
trandation process. These files, gopended with the suffix “.tmp”, reman after PPP trandation.
When errors are detected in the code during code paraldization, PPP messages will be generated
that reference these intermediate files (see Example 11-6). Any corrections should ill go into
the origind file from which trandated code is generated by PPP.

11.3 Building SM S Parallel Source Code

The transformation of Fortran code into pardld SMS code requires the use of PPP. PPP
trandations are based on both its andysis of the origind code and the SMS directives that were
inserted into the code. This section describes how to use PPP to create pardlel code at the
command line, defines what code generation options are available, and gives some examples.

11.3.1 PPP Command Line Options

All PPP code trandations are managed through a command line script cdled ppp. A sngle file
can be processed a a time and no inter-procedurd andyss is done. PPP is invoked by: ppp
[optiong] filename. Command line options currently available are:

--checkfirst A useful optimization to avoid PPP processing of files that do not
require trandation. This option can be used to dlow more flexible
use of suffix rules (see Section 11.4). If no 1/0 statements or
directives are found, no PPP processing is done and the following
message is output:

131

PROCESSI NG

--comment

--ExtendedSource

--Fcommon

--Finclude

Example 11-2)

--Fvigble

--IncludePath

--Verbose

11.3.2 Examples

File has no directives - SKIPPI NG PPP

leaves replaced linesin the code as Fortran comments. Thiscan
be useful for debugging the pardld code. Note: the string used to
comment out the origind code is C-PPP.

alow valid Fortran source to extend beyond 72 characters

name of an optiona include file thet is not part of the origind
source code. Typicdly it will contain data decomposition
directives (see Example 11-4)

name of an included file to be pardldized that is referenced in the
source file being trandated by PPP (see

file(s) to be made visible to PPP in order to correctly trandate the
current file. This option isonly required for a series of nested
include files (see Example 11-3)

indicates the type of file to be trandated is a Fortran include file
prints the command line options

include file seerch path. Similar to -1 F77/F90 compiler option

controls the output of PPP diagnogtic and code andysis messages.
Errors, Warnings and Notes are output based on the verbose vaue.
(see Example 11-7).

Example 11-1 shows how to build a pardle version of an includefile:

>> ppp --header params.h

[params. h]

par anmet er (nx=50,

ny=50)

CSMS$DECLARE_DECOVP(deconp, <nx, ny>)

C gl obal variabl e declarations ...

132

Example11-1. Building any Fortran includefilerequiresthe --header option.

Example 11-2 shows how to use the padld verson of an incude file when trandatiing an
executable code file. Since the trandation of params.h will result in an SMS pardld verson of
this file params.h.SMS), we use the --Finclude option to ensure this include file reference will be
changed in the pardld verson of dynamics.f.

>> ppp --Finclude=params.h --comment dynamicsf

[dynamicsf]

program dynami cs
i ncl ude ‘ parans. h’
c Fortran code ...

end

[dynamics amsf]

program dynami cs

C- PPP i ncl ude ‘ parans. h’
i ncl ude ‘ parans. h. SM5
c Fortran code
end

Example11-2: The—Finclude option isused to specify the Fortran include file params.h which isreferenced
in thefile (dynamics.f) being trandated. Thisensurestheparallel (trandated) include filewill bereferenced
in thetrandated output of dynamicsf.

Example 11-3 illudraes the use of the --Fvigble option. In this example, the file “variablesh’
requires information about the data decompostions listed in “paramsh” to correctly trandate the
declarations “a@ and “b” enclosed within the DISTRIBUTE directive. In paticular, the array
dimensons nx, ny and nz mug be trandated to process loca szes using information provided
by DECLARE DECOMP. The --Fvisble option is used is used to make paramsh “vishle’ to
variablesh.

>> ppp --header paramsh '
>> ppp --Fvisble=paramsh --header varidblesh

133

>> ppp --Finclude=params.h --Finclude=variablesh man.f

[parans. h]
...... béféﬁéiéfkthSb:.hyéébj...........................
CSMS$DECLARE_DECOMP(deconp, nx, ny)

C gl obal variable declarations ..

CSMs$DI STRI BUTE(deconp, nx, ny) BEG N
real a(nx, ny, nz)
real b(nx, ny, nz)
CSMS$DI STRI BUTE END

program mai n

i ncl ude ‘ parans. h’
include ‘variabl es.h’

c ot her code ..

end

Example11-3: The--Fvisible option isused when inter-dependent includefilesmust betrandated.

In Example 11-1, the CSMS$DECLARE_DECOMP was added to an include file that aready
exiged (paramsh). If the user prefers to insert the SMS directives into a separate “directives’
file, the option --Fcommon is used ingtead of --Finclude Example 11-4 illudraes the --
Fcommon option.

>> ppp --header samsinc
>> ppp --Fecommon=directivesinc dynamicsf

[directives.inc]
par anet er (nx=50, ny=50)
CSMS$DECLARE_DECOMP(deconp, <nx, ny>)

program main
i ncl ude ‘ parans. h’
nmore Fortran code ...

end

program mai n

include ‘directives.inc. SMS
i ncl ude ‘ parans. h’

nore Fortran code ...

end

Example11-4: Inthisexample DECLARE_DECOMP, defined in “directivesinc’, isreferenced (and
required) by “dynamics.f”. Note: Since params.h nolonger containsany SM S directives and will not be
trandated by PPP, it CANNOT belisted using the -Finclude command line option.

11.4 Building PPP Executables

A dmple makefile is presented to ad the user in trandating their sequentid codes into SMS
codes. This file assumes the vaiade “SMS’ has been set to the location where the SMS
software has been inddled. This can ether be st explicitly in the Makefile at line 5, or defined
as an environment variable (e.g. stenv SMSpat hnane).

standard make file used to build serial or SM S parallel executables

.SUFFI XES: .s .p
#
SM S =/usr/local/sms

system specific conpilation flags (for an SG Origin 2000)
COWPI LER = 77
COW_FLAGS = -2 -64 -mi ps4 -r10000 -fixedform-1$(SMS)/i ncl ude

SMS link libraries

LIBS = -L$(SM5)/lib -Ifnnt -Innt -Isrs -1ppp_support -Inpi

PPP specific options set here

PPP = $(SMS)/ bi n/ ppp

PPP_FLAGS = --Finclude=parans. h --Finclude=variables.h --coment \
--checkfirst

PPP_HEADER_FLAGS = --header --coment

135

19

20 # include files

21 I NCLUDES = params. h variables. h globals.h

22 PI NCLUDES = ${| NCLUDES: . h=. H}

23

24 # obj ect files

25 OBJS = filel.o file2.0 file3.0

26

27 PFI LES = ${O0BJS: . o=. p}

28 SFI LES = ${0OBJS: . o=. s}

29

30 # execut abl e target nanes

31 parall el : $(PI NCLUDES) $(PFI LES)

32 $(COWPI LER) -0 par_prog $(0BJS) $(COW_FLAGS) $(LI BS)
33

34 serial : $(1 NCLUDES) $(SFI LES)

35 $(COWPI LER) -0 seq_prog $(0OBJS) $(COWP_FLAGS) $(LIBS)
36

37 # suffix rules for sequential and parallel source
38 .f.s: $(| NCLUDES)

39 $(COWPI LER) -c $(COMP_FLAGS) $<

40

41 fop: $(PI NCLUDES)

42 $(PPP) $(PPP_FLAGS) $*.p

43 $(COWI LER) -c $(COWP_FLAGS) $*_sns.f

44 nv $*_sns.o0 $*.0

45

46 # include file translations

47 parans. H: parans. h

48 $(PPP) $(PPP_HEADER FLAGS) parans. h

49

50 vari abl es. H: vari abl es. h parans. h

51 $(PPP) $(PPP_HEADER FLAGS) --Fvisible=parans.h variables.h
52

53 gl obal s. H

54

55 cl ean:

56 /binfrm* _sms.f *.SMS *.0 *.tnp

Example11-5. A makefilefor serial or parallel source.

11.4.1 Makefile Compiler and Linker Options

The Fortran compiler flags (COMP_FLAGS on line 9) are set for an SGI Origin 2000. Other
sysdems will require different options. A makefile provided in the SMS didribution
($SMSllin/makefileheader) gives recommended compilation flags (found in varigble
STD_OPT_FLAGS) that should be used when modifying COMP_FLAGS for the target machine.
11.4.2 Include FileHandling

Include files are liged for both padld and sequentid source in the makefile variable
INCLUDES. Padld include files (line 22) are trandated usng SMS are built usng the explicit

136

targets params.H and variablesH (lines 47-51). Notice the PPP command to build variables.h
(line 51) contains the --Fvisble option in addition to the standard ppp flags defined by:
PPP_HEADER FLAGS a line 18. Since variables.h requires information from params.h for
proper trandation, this option is required (see Example 11-3).

PPP_FLAGS (lines 16-17) ligs the incude files that are trandated by PPP via the —Finclude
option. This option is required to ensure any references to these files in Fortran source will be
modified to their pardld filename (see

Example 11-2).

11.4.3 Building the Object Files

Two suffix rules are used to build sequentid or pardld object source. Sequential source files are
built usng the firg (.f.s) auffix rule (line 38) while pardle source rely on the second (.f.p) auffix
rule (line 41). This makefile uses .s for serid and .p for pardld but any suffix name could have

been used. Using these rules to build an SMS pardld object file from the file fil el. f, for
example, the user would enter:

>> make filel.p

PPP generated source is written to the file: fil el_sms. f, and the dyjectfile fi | el. o would
be built unless compilation errors occurred.

Smilarly, to build a serid object file, the user would enter:

>> make filel.s

11.4.4 Building the Executable

In addition to building sngle object files this mekefile can dso build a padld or sid
executable from a set of object files Usng a pre-defined lig of object file names (OBJS on line
25)), pardld (PFILES at line 27) and serid (SFILES at line 28) files are determined and listed as
dependencies for each target executable. This assumes there is a direct mapping between the
object and source file names (e.g. filel.o mapsto filel.f; not something else).

Then to build the SMS parald executable “par_prog” in this makefile, the user would enter:

>> make pardle

Smilarly, the user would enter the following to build a serid executable caled seq _prog:

>> make seria

137

11.5PPP Error Reporting

Two types of errors are reported by PPP. parsing errors and semantic errors. Parang errors must
be corrected before further trandations of the input file are permitted. Semantic errors are
reported as errors, warnings or notes. These messages can be controlled through the --verbose
option of PPP discussed in Section 11.5.2.

11.5.1 ParsingErrors

Parsng errors occur when PPP cannot resolve the Fortran code to the grammar defined by the

SMS/PPP directives (refer to the SMS Reference Manual), and the Fortran 77 language. Further

detail s about language extensions supported by SMS can be found at:
http:/AMww-ad.fd.noaa.gov/ac/SMS _Supported Fortran Features.html

The parser currently supports statements or PPP directives that are up to 500 characters in length.

Multiple statement lines are collgpsed and white space is removed before statements are parsed.

Statements longer than 500 characters will not be parsed correctly in PPP.

The form of aparsang error message is.

<filename> <line> <column> <error type> <message>

filename - name of file being parsed
line - line number
column - column number in which error occurred

errortype - typesare
ERROR, WARNING, NOTE

message - diagnostic message

An example of a PPP generated parsing error is shown in Example 11-6.

1 CSMS$DECLARE_DECOWP(spec_dh, <jtrun>)
2 CSMsS$DI STRI BUTE(spec_dh, jtrun) BEG N

3 real *8 cc(jtrun), bb(jtrun)
4 CSMs$DI STRI BUTE END

5

6 CSMS$PARALLEL(spec_dh, m) BEG N
7 do 3 mF2, jtrun, 2

8 cc(m = cc(m + bb(m

9 conti nue

10

11 C CSMS$PARALLEL END is missing
12

13 end

138

Example11-6. Codethat generatesa PPP parsingerror.

PPP generates the following error mes sage:

“Loops_sns. f.tnp" 13 501 ERROR: Syntax error
“Loops_sns. f.tnp" 13 501 NOTE Parsing resunmed here

This message indicates the parser faled in the file Loops_sns. f. t np at line 13 column 501.
A parsng error occurring & column 501 indicates no resolution of the statement to the grammar
by the end of the line. In the example, the parser expects a PARALLEL END directive before
the end of the file. Naturaly, the error should be corrected in the origind file Loops. f) rather
than the PPP generated file.

11.5.2 Semantic Errors

Semantic errors are reported when a section of code targeted for trandation has an error (a PPP
ERROR), may cause incorrect code to be generated (a PPP WARNING), or identifies a place
where a paticular type of transformation occurred or PPP language limitation was detected (a
PPP NOTE). By default, dl PPP ERROR messages will be output. Control of semantic errors
are handled through the PPP command line option: --verbose = <vaue>. Four verbose options
are permitted:

vaue message domain
0 No semantic messages are output (not recommended)
1 PPP ERRORS only (DEFAULT)
2 PPP ERRORS and WARNINGS only
3 PPP ERRORS, WARNINGS and NOTES

While the error messages should aways be addressed, warning messages may aso be useful for
detecting potentid problems. For example, the code segment in Example 11-7 below causes PPP
to generate the following important warning message:

1O f.tnp” 11 13 WARNING This vari abl e, deconposed by CSMS$DI STRI BUTE, is
bei ng used outside of a parallel region.

This warning message indicates a problem on line 11, column 13 of the PPP generated file
| O. f.tnp. The variable cc was defined to be a didtributed array (usng DISTRIBUTE) but is
being referenced outside a pardld region (PARALLEL). Further explanation on the use of these
directives can be found in Section 2.3.

>> ppp --verbose=2 10.p

139

[EEN

CSMS$DI STRI BUTE(dh, m n) BEG N

2 real cc(mn)

3 CSMS$DI STRI BUTE END

4 doi =1, m

5 doj =1, n

6 cc(i,j) =0.0
7 enddo

8 enddo

9

10 c nor e code ..

Example11-7. Codethat generatesa WARNING because the decomposed variable“cc” isbeing used outside
of aparallel region.

11.6 Compilation Errors

During the pardldization process PPP generaes new variables for some trandations. PPP
vaiables ae dther automaticdly generated or defined explicitty by PPP. Explicitly defined
names will aways contain a double underscore in their name (eg. ppp__Status). To avoid
compiler errors due to name space conflicts, avoid using variable names with double underscores
in them. For example, the sequentid code cannot contain a varidble cdled PPP__ st at us
because PPP trandation explicitly defines another varigble caled ppp__st at us for its own
use. A compilaion error would result because two variables would be declared with the same
name.

140

12 Running a SM S Program
12.1 Introduction

Once a program has been trandated into SMS pardld code (Section 11.3) and linked to the
gopropriate libraries (see Section 11.4), it can be run on one or more processors usng the SMS
run-time executable smsRun. The syntax for smsRun is

>> snsRun nunprocs execname [options]

By default, SMS uses an additional server process to perform 1/0O operations, and provide overal
management and control services for the other processes. For example, to run the executable test
with two processes and one server process, the user would enter:

>> snpsRun 2 test

It is posshle to take advantage of the idle compute cycles avalable on the server process by
setting SMS environment variable SMS SERVER MODE to serverl ess. This will permit
computational and management functions to co-exis in a sngle process This option is
beneficid when only a smdl number of processors are available However, as the numbers of
proceses grow, the cost of peforming both server functions and computations will limit the
performance of the other dependent processes.

Figure 9-5 assumes a single process is run on each processor. However, SMS permits the user to
request more processes (using smsRun) than available processors. For example if my_program
was run with 20 processes:

>> gmskRun 20 my_program

on a sysem with only 16 processors, five processors would contain two processes, one would
contain the server process, and the rest would each contain a single process designated to run the
program. This is a bad idea because peformance will suffer whenever multiple processes are
scheduled on asingle processor on most machines.

12.2 Optional Command Line Arguments

Severa optional arguments to smsRkun are permitted. One optiona argument to control the
number of /O write-cache processes to be dedicated to the program’'s execution can be expressed

by:

>> spsRUnN nunprocs execname -sSnsWc nuncachepr ocs

The use of write-cache processes to improve performance is discussed in Section 9.4.5. Another
option, -ans-, dlows the user to specify machine specific arguments to the underlying

141

communication layer (eg. MPl, SHMEM) directly. All arguments that follow this option will be

ignored by SMS and passed directly to the communications software. For example:

>> gnsRun 3 test -ams- -mpi_specid

illudrates a way to pass the run-time option -mpi_specid to the underlying MPI executable
(mpirun) to specify node names on a network of work gations.

specific optins for smsRun are available a the following SMS web ste:

http:/Aww-ad.fd.noaa.gov/iac/SMS _Run_Options.html

12.3 Run-time Environment Variables

Seveard environment variables can dso be sat to control the run-time behavior of SMS. The

following environment varidbles are available:

SMS BITWISE
SMS CHECK_HALO

SMS_CLOSE_MODE
SMS |0 FORMAT

SMS 10C_SIZE
SMS PUTS MODE

SMS RAN_RSTYLE
SMS RBC
SMS RBS
SMS READ_FORMAT

SMS_SERVER_MODE
SMS TIMER LEVEL
SMS WBS

SMS WRITE_FORMAT

SMS _XFERMODE

Sat to “EXACT” to use hit-wise exact reductions - see Section 7.2

Set to “ON” to execute checks of halo regions specified by
CHECK_HALO directives.

Used to specify file format for filesthat are read or written by SMS

(see Section 9.1).

Improving Output Performance (see page 125)
Modifies the default behavior of formatted output. Options are:

ROQOT, ASYNC and ORDERED. See Section 9.3 for more details

about these options.
Improving Input Performance (see page 127)
Improving Input Performance (see page 127)
Improving Input Performance (see page 127)
Used to specify file format for filesthat are read by SMS (see
Section 9.1).

The SM S Server Process (see page 122)

See Section 9.4.5 - page 125

Used to specify file format for files that are written by SMS (see
Section 9.1).
Controls transfer dgorithms that are used to implement
TRANSFER. Optionsare “logn” and “origind”

142

Information about other machine

12.4 Run-time Error M essages

When an eror occurs in an SMS program, execution will usudly terminae and SMS will
generate an informationd message describing the source file name, line number, and a brief
summay of the problem. A complete st of SMS run-time error messages is avalable at the
following SMS web ste:

http:/Aww-ad.fd.noaa.gov/ac/SMS_Messages.html

Example 12-1 illustrates SMS run-time message cgpabilities. Recdl that the user is respongble
for determining the correct number of processes over which to run the program. For datic
memory dlocated programs, the minimum number of processes will be determined by declared
locd 9zevauesin DECLARE DECOMP as discussed in Section 3.3.

1 program exanpl el
2
3 par anet er (nx=50, ny=50)
4 par anmet er (nx_a=nx/2, ny_a=ny/?2)
5 CSMS$DECLARE_DECOMP(deconp, <nx_a, ny_a>)
6 CSMS$DI STRI BUTE(deconp, nx,ny) BEG N
7 real a(nx, ny)
8 CSMS$DI STRI BUTE END
9
10 CSMS$CREATE_DECOWP(deconp, <nx, ny>, <0, 0>)
>> gmsRun 1 examplel
Process: O Error at: ./exanple_sns.f.tnp:17.1
Process: O Error status = -2202 MSG DECOWPOSED ARRAYS ARE TOO SMALL.
Process: 0 Aborting...

Example12-1. Code and command that generatesarun-timeSMSerror.

After PPP trandation, the array a will be defined with the declared locd Szes nx_a and ny_a
given in DECLARE DECOMP. Since the locd szes of this array are hdf the sze of the origind
code (nx and ny respectively), the minimum number of processes the user can run this problem is
four (two in each direction). If you attempt to run on fewer processes, the program will hat with
the given error messace.

The fird line of the error message indicates the file name and location within the file where the
problem occurred. PPP generated code frequently uses sub-numbering due to multiple generated
cdls to SMS routines that dem from the same line of origind code. In this example, a run-time
error was detected by SMS at line 17 in code generated by the directive CREATE_DECOMP that
can befound in temporary file exanpl el _sns. . t np (hot shown).

143

The second line gives the SMS eror message. The error messages reflects the incorrect Szing of
the decompodtion deconp, decared by DECLARE DECOMP and initidized by
CREATE_DECOMP.

Once the problem is understood corrections to the code can be made. These corrections should
go into the origind file (in this case examplel.f) not in the temporary file where the problem was
detected and probably diagnosed. Once changes are made, ppp can be executed to re-trandate
the input file from which a fresh executable can be built and tested.

Appendix A: Assgnment of Processes to Decomposed Dimensions

The assgnment of processes to decomposed dimensions by SMS depends on the number
of processes and the globa sizes of the decomposed dimensions. Below are the rules that
SMS follows when deciding how to alocate processes among one or two decomposed
dimensons. Assume that Np = number of processes and Nd = number of decomposed
dimensons

1) If Nd=1, assgn dl processes to the sngle decomposed dimension.

2) If Np is prime, assign al processes to the decomposed dimension with the largest
gze

3) If Npis not prime and Nd=2, factor Np into f1*f2 = Np, such that factors f1 and f2
are as close together as possible.

3a) If factorsare equd (f1=f2), assign f1 processes to each decomposed dimension.

3b) If factors are not equd, assign a number of processes equd to the largest factor to
the decomposed dimension with the largest size.

30 If factors are not equa and szes of decomposed dimensions are equd, assgn a
number of processes equd to the largest factor to the last decomposed dimension.

These rules are intended to dlow for optimum performance with minimd input from the
user. Rule 1 handles the smple cases where more than one decomposed dimension has
been specified but only one can actualy be decomposed because the number of processes
available is prime. Assgnment of al processes to the largest decomposed dimension will
usudly result in the most efficient digribution of work. Rule 3 redricts factoring of Np
to keep the number of processes assigned to each dimension as close together as possible.
For example, with Nd=2, 100 processes would be factored into 10* 10, not 20*5 or 25*4.
The effect of this rule is to keep the virtud process array as "squar€' as possible which
can be beneficid for "exchange' type communications on some mechines. Rule 3b will

144

cause more processes to be assigned to larger dimensions in cases where factors are not
equa. This was the case in the 8-process run where im was grester than jm in the
examples above. The purpose of this rule is to dlow SMS to attempt to "fit" the virtud
process array to the Fortran arrays as closdly as possible. Rule 3c causes SMS to assign
more processes to the last decomposed dimension to alow the user to control whether
more processes will be assigned to the outer or inner array dimensions.

To further illustrate rule 3c, consder the following code fragments.

[Fragment 1.]
CSMS$CREATE _DECOVP(DECOVMP_1, <nx, ny>, <0, 0>)

CSMS$DI STRI BUTE(DECOVP_1, <nx>, <ny>) BEG N
real u(nx, ny)
CSMs$DI STRI BUTE END

[Fragment 2.]
CSMS$CREATE_DECOWMP(DECOWP_2, <jm inP, <0, 0>)

CSMs$DI STRI BUTE(DECOWP_2, <ink, <jnmr) BEG N
real a(imjm
CSMs$DI STRI BUTE END

In fragment 1, when nx. EQ. ny, more processes will be assgned to the second
decomposed dimension, ny, which is the outer dimendon of aray u. This will preserve
the longest possible vector lengths because the inner dimension of u (nx) will not be Folit
up among the processes. This approach is good for a machine with vector processes. In
fragment 2, when im EQ j m more processes will be assgned to the second
decomposed dimension, i m which is the inner dimenson of aray a. In some specid
cases, this may result in better performance on some cache-based machines. In generd,
the user can smply keep the decomposed dimensions in the same order as the aray
dimensions and expect the best performance in most cases on most machines.

145

A

adjacent dependence - 27
Aggregating - 79
ASYNC -17,111

B

bandwidth - 5
Bit-wise Exact - 94
broadcast - 107

C

cache - 36
CHECK_HALO - 88
CREATE _DECOMP - 12

D

DECLARE_DECOMP - 12
decomposition - 10
dependence andlysis - 5
dimensontag - 50
DISTRIBUTE - 12

Digributed Memory - 5
dynamic memory dlocation - 10

E

embarrassngly pardld - 60
EXCHANGE - 32, 47, 66

F

FDA -5
finite difference gpproximation - 5

G

gather - 90, 97, 104
globa array - 12

146

globa dependence - 18

globa indices - 12

global sizes- 12, 42, 54, 67, 138
GLOBAL_INDEX - 14,64

H

halo regions - 14, 29, 38, 76
HALO_COMP - 14, 81

IGNORE - 99

Index Scrambling - 46
INSERT - 99

interior - 67, 68

L

latency - 5

Ibound - 62

Load Bdancing - 46

locd array - 12

local indices - 12, 14, 56, 58, 60
locd szes - 12

Lower Bounds - 52

M

MPI - 8

N

namdis - 111

native - 104, 108

numbers - 6, 19, 45, 56, 59, 94, 96
Numerical Wesather Prediction - 5
NWP -5

O

ORDERED - 17,111

P

PARALLEL - 12
periodic - 32

PPP - 8

PRINT_MODE - 17, 112
process - 6

R

recurrence relation - 33
REDUCE - 13

redundant computations - 81
REMOVE - 99

ROOT - 111

S

scatter - 104

scope - 13

SERIAL - 56, 92, 99
serverless - 114, 117, 135
shared memory - 5

Sgze- 61

147

SMS 10 FORMAT - 108

SMS READ_FORMAT - 108
SMS WRITE_FORMAT - 108
sanskun - 8

spectrd transform method - 5
SPMD -5

Standard Reductions - 94

gatic memory dlocation - 38
gencil - 27

T

TO GLOBAL - 14
TO LOCAL - 14, 57
TRANSFER - 13

U

ubound - 61

Vv

vector - 36

